本文整理汇总了C++中IGRAPH_FINALLY_CLEAN函数的典型用法代码示例。如果您正苦于以下问题:C++ IGRAPH_FINALLY_CLEAN函数的具体用法?C++ IGRAPH_FINALLY_CLEAN怎么用?C++ IGRAPH_FINALLY_CLEAN使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了IGRAPH_FINALLY_CLEAN函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: igraph_adjlist_simplify
int igraph_adjlist_simplify(igraph_adjlist_t *al) {
long int i;
long int n=al->length;
igraph_vector_t mark;
IGRAPH_VECTOR_INIT_FINALLY(&mark, n);
for (i=0; i<n; i++) {
igraph_vector_t *v=&al->adjs[i];
long int j, l=igraph_vector_size(v);
VECTOR(mark)[i] = i+1;
for (j=0; j<l; /* nothing */) {
long int e=VECTOR(*v)[j];
if (VECTOR(mark)[e] != i+1) {
VECTOR(mark)[e]=i+1;
j++;
} else {
VECTOR(*v)[j] = igraph_vector_tail(v);
igraph_vector_pop_back(v);
l--;
}
}
}
igraph_vector_destroy(&mark);
IGRAPH_FINALLY_CLEAN(1);
return 0;
}
示例2: igraph_vector_rank
int igraph_vector_rank(const igraph_vector_t *v, igraph_vector_t *res,
long int nodes) {
igraph_vector_t rad;
igraph_vector_t ptr;
long int edges = igraph_vector_size(v);
long int i, c=0;
IGRAPH_VECTOR_INIT_FINALLY(&rad, nodes);
IGRAPH_VECTOR_INIT_FINALLY(&ptr, edges);
IGRAPH_CHECK(igraph_vector_resize(res, edges));
for (i=0; i<edges; i++) {
long int elem=VECTOR(*v)[i];
VECTOR(ptr)[i] = VECTOR(rad)[elem];
VECTOR(rad)[elem] = i+1;
}
for (i=0; i<nodes; i++) {
long int p=VECTOR(rad)[i];
while (p != 0) {
VECTOR(*res)[p-1]=c++;
p=VECTOR(ptr)[p-1];
}
}
igraph_vector_destroy(&ptr);
igraph_vector_destroy(&rad);
IGRAPH_FINALLY_CLEAN(2);
return 0;
}
示例3: igraph_is_separator
int igraph_is_separator(const igraph_t *graph,
const igraph_vs_t candidate,
igraph_bool_t *res) {
long int no_of_nodes=igraph_vcount(graph);
igraph_vector_bool_t removed;
igraph_dqueue_t Q;
igraph_vector_t neis;
igraph_vit_t vit;
IGRAPH_CHECK(igraph_vit_create(graph, candidate, &vit));
IGRAPH_FINALLY(igraph_vit_destroy, &vit);
IGRAPH_CHECK(igraph_vector_bool_init(&removed, no_of_nodes));
IGRAPH_FINALLY(igraph_vector_bool_destroy, &removed);
IGRAPH_CHECK(igraph_dqueue_init(&Q, 100));
IGRAPH_FINALLY(igraph_dqueue_destroy, &Q);
IGRAPH_VECTOR_INIT_FINALLY(&neis, 0);
IGRAPH_CHECK(igraph_i_is_separator(graph, &vit, -1, res, &removed,
&Q, &neis, no_of_nodes));
igraph_vector_destroy(&neis);
igraph_dqueue_destroy(&Q);
igraph_vector_bool_destroy(&removed);
igraph_vit_destroy(&vit);
IGRAPH_FINALLY_CLEAN(4);
return 0;
}
示例4: igraph_get_edgelist
int igraph_get_edgelist(const igraph_t *graph, igraph_vector_t *res, igraph_bool_t bycol) {
igraph_eit_t edgeit;
long int no_of_edges=igraph_ecount(graph);
long int vptr=0;
igraph_integer_t from, to;
IGRAPH_CHECK(igraph_vector_resize(res, no_of_edges*2));
IGRAPH_CHECK(igraph_eit_create(graph, igraph_ess_all(IGRAPH_EDGEORDER_ID),
&edgeit));
IGRAPH_FINALLY(igraph_eit_destroy, &edgeit);
if (bycol) {
while (!IGRAPH_EIT_END(edgeit)) {
igraph_edge(graph, IGRAPH_EIT_GET(edgeit), &from, &to);
VECTOR(*res)[vptr]=from;
VECTOR(*res)[vptr+no_of_edges]=to;
vptr++;
IGRAPH_EIT_NEXT(edgeit);
}
} else {
while (!IGRAPH_EIT_END(edgeit)) {
igraph_edge(graph, IGRAPH_EIT_GET(edgeit), &from, &to);
VECTOR(*res)[vptr++]=from;
VECTOR(*res)[vptr++]=to;
IGRAPH_EIT_NEXT(edgeit);
}
}
igraph_eit_destroy(&edgeit);
IGRAPH_FINALLY_CLEAN(1);
return 0;
}
示例5: igraph_i_cliquer_callback
int igraph_i_cliquer_callback(const igraph_t *graph,
igraph_integer_t min_size, igraph_integer_t max_size,
igraph_clique_handler_t *cliquehandler_fn, void *arg)
{
graph_t *g;
struct callback_data cd;
igraph_integer_t vcount = igraph_vcount(graph);
if (vcount == 0)
return IGRAPH_SUCCESS;
if (min_size <= 0) min_size = 1;
if (max_size <= 0) max_size = 0;
if (max_size > 0 && max_size < min_size)
IGRAPH_ERROR("max_size must not be smaller than min_size", IGRAPH_EINVAL);
igraph_to_cliquer(graph, &g);
IGRAPH_FINALLY(graph_free, g);
cd.handler = cliquehandler_fn;
cd.arg = arg;
igraph_cliquer_opt.user_data = &cd;
igraph_cliquer_opt.user_function = &callback_callback;
CLIQUER_INTERRUPTABLE(clique_unweighted_find_all(g, min_size, max_size, /* maximal= */ FALSE, &igraph_cliquer_opt));
graph_free(g);
IGRAPH_FINALLY_CLEAN(1);
return IGRAPH_SUCCESS;
}
示例6: igraph_i_weighted_clique_number
int igraph_i_weighted_clique_number(const igraph_t *graph,
const igraph_vector_t *vertex_weights, igraph_real_t *res)
{
graph_t *g;
igraph_integer_t vcount = igraph_vcount(graph);
if (vcount == 0) {
*res = 0;
return IGRAPH_SUCCESS;
}
igraph_to_cliquer(graph, &g);
IGRAPH_FINALLY(graph_free, g);
IGRAPH_CHECK(set_weights(vertex_weights, g));
igraph_cliquer_opt.user_function = NULL;
/* we are not using a callback function, thus this is not interruptable */
*res = clique_max_weight(g, &igraph_cliquer_opt);
graph_free(g);
IGRAPH_FINALLY_CLEAN(1);
return IGRAPH_SUCCESS;
}
示例7: igraph_inclist_init
int igraph_inclist_init(const igraph_t *graph,
igraph_inclist_t *il,
igraph_neimode_t mode) {
long int i;
if (mode != IGRAPH_IN && mode != IGRAPH_OUT && mode != IGRAPH_ALL) {
IGRAPH_ERROR("Cannot create incidence list view", IGRAPH_EINVMODE);
}
if (!igraph_is_directed(graph)) { mode=IGRAPH_ALL; }
il->length=igraph_vcount(graph);
il->incs=igraph_Calloc(il->length, igraph_vector_t);
if (il->incs == 0) {
IGRAPH_ERROR("Cannot create incidence list view", IGRAPH_ENOMEM);
}
IGRAPH_FINALLY(igraph_inclist_destroy, il);
for (i=0; i<il->length; i++) {
IGRAPH_ALLOW_INTERRUPTION();
IGRAPH_CHECK(igraph_vector_init(&il->incs[i], 0));
IGRAPH_CHECK(igraph_incident(graph, &il->incs[i], i, mode));
}
IGRAPH_FINALLY_CLEAN(1);
return 0;
}
示例8: igraph_i_multilevel_shrink
/* Shrinks communities into single vertices, keeping all the edges.
* This method is internal because it destroys the graph in-place and
* creates a new one -- this is fine for the multilevel community
* detection where a copy of the original graph is used anyway.
* The membership vector will also be rewritten by the underlying
* igraph_membership_reindex call */
int igraph_i_multilevel_shrink(igraph_t *graph, igraph_vector_t *membership) {
igraph_vector_t edges;
long int no_of_nodes = igraph_vcount(graph);
long int no_of_edges = igraph_ecount(graph);
igraph_bool_t directed = igraph_is_directed(graph);
long int i;
igraph_eit_t eit;
if (no_of_nodes == 0)
return 0;
if (igraph_vector_size(membership) < no_of_nodes) {
IGRAPH_ERROR("cannot shrink graph, membership vector too short",
IGRAPH_EINVAL);
}
IGRAPH_VECTOR_INIT_FINALLY(&edges, no_of_edges * 2);
IGRAPH_CHECK(igraph_reindex_membership(membership, 0));
/* Create the new edgelist */
igraph_eit_create(graph, igraph_ess_all(IGRAPH_EDGEORDER_ID), &eit);
IGRAPH_FINALLY(igraph_eit_destroy, &eit);
i = 0;
while (!IGRAPH_EIT_END(eit)) {
igraph_integer_t from, to;
IGRAPH_CHECK(igraph_edge(graph, IGRAPH_EIT_GET(eit), &from, &to));
VECTOR(edges)[i++] = VECTOR(*membership)[(long int) from];
VECTOR(edges)[i++] = VECTOR(*membership)[(long int) to];
IGRAPH_EIT_NEXT(eit);
}
igraph_eit_destroy(&eit);
IGRAPH_FINALLY_CLEAN(1);
/* Create the new graph */
igraph_destroy(graph);
no_of_nodes = (long int) igraph_vector_max(membership)+1;
IGRAPH_CHECK(igraph_create(graph, &edges, (igraph_integer_t) no_of_nodes,
directed));
igraph_vector_destroy(&edges);
IGRAPH_FINALLY_CLEAN(1);
return 0;
}
示例9: igraph_i_weighted_cliques
int igraph_i_weighted_cliques(const igraph_t *graph,
const igraph_vector_t *vertex_weights, igraph_vector_ptr_t *res,
igraph_real_t min_weight, igraph_real_t max_weight, igraph_bool_t maximal)
{
graph_t *g;
igraph_integer_t vcount = igraph_vcount(graph);
if (vcount == 0) {
igraph_vector_ptr_clear(res);
return IGRAPH_SUCCESS;
}
if (min_weight != (int) min_weight) {
IGRAPH_WARNING("Only integer vertex weights are supported; the minimum weight will be truncated to its integer part");
min_weight = (int) min_weight;
}
if (max_weight != (int) max_weight) {
IGRAPH_WARNING("Only integer vertex weights are supported; the maximum weight will be truncated to its integer part");
max_weight = (int) max_weight;
}
if (min_weight <= 0) min_weight = 1;
if (max_weight <= 0) max_weight = 0;
if (max_weight > 0 && max_weight < min_weight)
IGRAPH_ERROR("max_weight must not be smaller than min_weight", IGRAPH_EINVAL);
igraph_to_cliquer(graph, &g);
IGRAPH_FINALLY(graph_free, g);
IGRAPH_CHECK(set_weights(vertex_weights, g));
igraph_vector_ptr_clear(res);
igraph_cliquer_opt.user_data = res;
igraph_cliquer_opt.user_function = &collect_cliques_callback;
IGRAPH_FINALLY(free_clique_list, res);
CLIQUER_INTERRUPTABLE(clique_find_all(g, min_weight, max_weight, maximal, &igraph_cliquer_opt));
IGRAPH_FINALLY_CLEAN(1);
graph_free(g);
IGRAPH_FINALLY_CLEAN(1);
return IGRAPH_SUCCESS;
}
示例10: igraph_adjlist_init_complementer
int igraph_adjlist_init_complementer(const igraph_t *graph,
igraph_adjlist_t *al,
igraph_neimode_t mode,
igraph_bool_t loops) {
long int i, j, k, n;
igraph_bool_t* seen;
igraph_vector_t vec;
if (mode != IGRAPH_IN && mode != IGRAPH_OUT && mode != IGRAPH_ALL) {
IGRAPH_ERROR("Cannot create complementer adjlist view", IGRAPH_EINVMODE);
}
if (!igraph_is_directed(graph)) { mode=IGRAPH_ALL; }
al->length=igraph_vcount(graph);
al->adjs=igraph_Calloc(al->length, igraph_vector_t);
if (al->adjs == 0) {
IGRAPH_ERROR("Cannot create complementer adjlist view", IGRAPH_ENOMEM);
}
IGRAPH_FINALLY(igraph_adjlist_destroy, al);
n=al->length;
seen=igraph_Calloc(n, igraph_bool_t);
if (seen==0) {
IGRAPH_ERROR("Cannot create complementer adjlist view", IGRAPH_ENOMEM);
}
IGRAPH_FINALLY(igraph_free, seen);
IGRAPH_VECTOR_INIT_FINALLY(&vec, 0);
for (i=0; i<al->length; i++) {
IGRAPH_ALLOW_INTERRUPTION();
igraph_neighbors(graph, &vec, i, mode);
memset(seen, 0, sizeof(igraph_bool_t)*al->length);
n=al->length;
if (!loops) { seen[i] = 1; n--; }
for (j=0; j<igraph_vector_size(&vec); j++) {
if (! seen [ (long int) VECTOR(vec)[j] ] ) {
n--;
seen[ (long int) VECTOR(vec)[j] ] = 1;
}
}
IGRAPH_CHECK(igraph_vector_init(&al->adjs[i], n));
for (j=0, k=0; k<n; j++) {
if (!seen[j]) {
VECTOR(al->adjs[i])[k++] = j;
}
}
}
igraph_Free(seen);
igraph_vector_destroy(&vec);
IGRAPH_FINALLY_CLEAN(3);
return 0;
}
示例11: igraph_i_separators_store
int igraph_i_separators_store(igraph_vector_ptr_t *separators,
const igraph_adjlist_t *adjlist,
igraph_vector_t *components,
igraph_vector_t *leaveout,
unsigned long int *mark,
igraph_vector_t *sorter) {
/* We need to stote N(C), the neighborhood of C, but only if it is
* not already stored among the separators.
*/
long int cptr=0, next, complen=igraph_vector_size(components);
while (cptr < complen) {
long int saved=cptr;
igraph_vector_clear(sorter);
/* Calculate N(C) for the next C */
while ( (next=(long int) VECTOR(*components)[cptr++]) != -1) {
VECTOR(*leaveout)[next] = *mark;
}
cptr=saved;
while ( (next=(long int) VECTOR(*components)[cptr++]) != -1) {
igraph_vector_int_t *neis=igraph_adjlist_get(adjlist, next);
long int j, nn=igraph_vector_int_size(neis);
for (j=0; j<nn; j++) {
long int nei=(long int) VECTOR(*neis)[j];
if (VECTOR(*leaveout)[nei] != *mark) {
igraph_vector_push_back(sorter, nei);
VECTOR(*leaveout)[nei] = *mark;
}
}
}
igraph_vector_sort(sorter);
UPDATEMARK();
/* Add it to the list of separators, if it is new */
if (igraph_i_separators_newsep(separators, sorter)) {
igraph_vector_t *newc=igraph_Calloc(1, igraph_vector_t);
if (!newc) {
IGRAPH_ERROR("Cannot calculate minimal separators", IGRAPH_ENOMEM);
}
IGRAPH_FINALLY(igraph_free, newc);
igraph_vector_copy(newc, sorter);
IGRAPH_FINALLY(igraph_vector_destroy, newc);
IGRAPH_CHECK(igraph_vector_ptr_push_back(separators, newc));
IGRAPH_FINALLY_CLEAN(2);
}
} /* while cptr < complen */
return 0;
}
示例12: igraph_i_maximum_bipartite_matching_unweighted_relabel
int igraph_i_maximum_bipartite_matching_unweighted_relabel(const igraph_t* graph,
const igraph_vector_bool_t* types, igraph_vector_t* labels,
igraph_vector_long_t* match, igraph_bool_t smaller_set) {
long int i, j, n, no_of_nodes = igraph_vcount(graph), matched_to;
igraph_dqueue_long_t q;
igraph_vector_t neis;
debug("Running global relabeling.\n");
/* Set all the labels to no_of_nodes first */
igraph_vector_fill(labels, no_of_nodes);
/* Allocate vector for neighbors */
IGRAPH_VECTOR_INIT_FINALLY(&neis, 0);
/* Create a FIFO for the BFS and initialize it with the unmatched rows
* (i.e. members of the larger set) */
IGRAPH_CHECK(igraph_dqueue_long_init(&q, 0));
IGRAPH_FINALLY(igraph_dqueue_long_destroy, &q);
for (i = 0; i < no_of_nodes; i++) {
if (VECTOR(*types)[i] != smaller_set && VECTOR(*match)[i] == -1) {
IGRAPH_CHECK(igraph_dqueue_long_push(&q, i));
VECTOR(*labels)[i] = 0;
}
}
/* Run the BFS */
while (!igraph_dqueue_long_empty(&q)) {
long int v = igraph_dqueue_long_pop(&q);
long int w;
IGRAPH_CHECK(igraph_neighbors(graph, &neis, (igraph_integer_t) v,
IGRAPH_ALL));
n = igraph_vector_size(&neis);
//igraph_vector_shuffle(&neis);
for (j = 0; j < n; j++) {
w = (long int) VECTOR(neis)[j];
if (VECTOR(*labels)[w] == no_of_nodes) {
VECTOR(*labels)[w] = VECTOR(*labels)[v] + 1;
matched_to = VECTOR(*match)[w];
if (matched_to != -1 && VECTOR(*labels)[matched_to] == no_of_nodes) {
IGRAPH_CHECK(igraph_dqueue_long_push(&q, matched_to));
VECTOR(*labels)[matched_to] = VECTOR(*labels)[w] + 1;
}
}
}
}
printf("Inside relabel : ");
igraph_vector_print(labels);
igraph_dqueue_long_destroy(&q);
igraph_vector_destroy(&neis);
IGRAPH_FINALLY_CLEAN(2);
return IGRAPH_SUCCESS;
}
示例13: igraph_complementer
int igraph_complementer(igraph_t *res, const igraph_t *graph,
igraph_bool_t loops) {
long int no_of_nodes=igraph_vcount(graph);
igraph_vector_t edges;
igraph_vector_t neis;
long int i, j;
long int zero=0, *limit;
IGRAPH_VECTOR_INIT_FINALLY(&edges, 0);
IGRAPH_VECTOR_INIT_FINALLY(&neis, 0);
if (igraph_is_directed(graph)) {
limit=&zero;
} else {
limit=&i;
}
for (i=0; i<no_of_nodes; i++) {
IGRAPH_ALLOW_INTERRUPTION();
IGRAPH_CHECK(igraph_neighbors(graph, &neis, (igraph_integer_t) i,
IGRAPH_OUT));
if (loops) {
for (j=no_of_nodes-1; j>=*limit; j--) {
if (igraph_vector_empty(&neis) || j>igraph_vector_tail(&neis)) {
IGRAPH_CHECK(igraph_vector_push_back(&edges, i));
IGRAPH_CHECK(igraph_vector_push_back(&edges, j));
} else {
igraph_vector_pop_back(&neis);
}
}
} else {
for (j=no_of_nodes-1; j>=*limit; j--) {
if (igraph_vector_empty(&neis) || j>igraph_vector_tail(&neis)) {
if (i!=j) {
IGRAPH_CHECK(igraph_vector_push_back(&edges, i));
IGRAPH_CHECK(igraph_vector_push_back(&edges, j));
}
} else {
igraph_vector_pop_back(&neis);
}
}
}
}
IGRAPH_CHECK(igraph_create(res, &edges, (igraph_integer_t) no_of_nodes,
igraph_is_directed(graph)));
igraph_vector_destroy(&edges);
igraph_vector_destroy(&neis);
IGRAPH_I_ATTRIBUTE_DESTROY(res);
IGRAPH_I_ATTRIBUTE_COPY(res, graph, /*graph=*/1, /*vertex=*/1, /*edge=*/0);
IGRAPH_FINALLY_CLEAN(2);
return 0;
}
示例14: igraph_i_maximal_or_largest_cliques_or_indsets
int igraph_i_maximal_or_largest_cliques_or_indsets(const igraph_t *graph,
igraph_vector_ptr_t *res,
igraph_integer_t *clique_number,
igraph_bool_t keep_only_largest,
igraph_bool_t complementer) {
igraph_i_max_ind_vsets_data_t clqdata;
long int no_of_nodes = igraph_vcount(graph), i;
if (igraph_is_directed(graph))
IGRAPH_WARNING("directionality of edges is ignored for directed graphs");
clqdata.matrix_size=no_of_nodes;
clqdata.keep_only_largest=keep_only_largest;
if (complementer)
IGRAPH_CHECK(igraph_adjlist_init_complementer(graph, &clqdata.adj_list, IGRAPH_ALL, 0));
else
IGRAPH_CHECK(igraph_adjlist_init(graph, &clqdata.adj_list, IGRAPH_ALL));
IGRAPH_FINALLY(igraph_adjlist_destroy, &clqdata.adj_list);
clqdata.IS = igraph_Calloc(no_of_nodes, igraph_integer_t);
if (clqdata.IS == 0)
IGRAPH_ERROR("igraph_i_maximal_or_largest_cliques_or_indsets failed", IGRAPH_ENOMEM);
IGRAPH_FINALLY(igraph_free, clqdata.IS);
IGRAPH_VECTOR_INIT_FINALLY(&clqdata.deg, no_of_nodes);
for (i=0; i<no_of_nodes; i++)
VECTOR(clqdata.deg)[i] = igraph_vector_size(igraph_adjlist_get(&clqdata.adj_list, i));
clqdata.buckets = igraph_Calloc(no_of_nodes+1, igraph_set_t);
if (clqdata.buckets == 0)
IGRAPH_ERROR("igraph_maximal_or_largest_cliques_or_indsets failed", IGRAPH_ENOMEM);
IGRAPH_FINALLY(igraph_i_free_set_array, clqdata.buckets);
for (i=0; i<no_of_nodes; i++)
IGRAPH_CHECK(igraph_set_init(&clqdata.buckets[i], 0));
if (res) igraph_vector_ptr_clear(res);
/* Do the show */
clqdata.largest_set_size=0;
IGRAPH_CHECK(igraph_i_maximal_independent_vertex_sets_backtrack(graph, res, &clqdata, 0));
/* Cleanup */
for (i=0; i<no_of_nodes; i++) igraph_set_destroy(&clqdata.buckets[i]);
igraph_adjlist_destroy(&clqdata.adj_list);
igraph_vector_destroy(&clqdata.deg);
igraph_free(clqdata.IS);
igraph_free(clqdata.buckets);
IGRAPH_FINALLY_CLEAN(4);
if (clique_number) *clique_number = clqdata.largest_set_size;
return 0;
}
示例15: igraph_random_walk
int igraph_random_walk(const igraph_t *graph, igraph_vector_t *walk,
igraph_integer_t start, igraph_neimode_t mode,
igraph_integer_t steps,
igraph_random_walk_stuck_t stuck) {
/* TODO:
- multiple walks potentially from multiple start vertices
- weights
*/
igraph_lazy_adjlist_t adj;
igraph_integer_t vc = igraph_vcount(graph);
igraph_integer_t i;
if (start < 0 || start >= vc) {
IGRAPH_ERROR("Invalid start vertex", IGRAPH_EINVAL);
}
if (steps < 0) {
IGRAPH_ERROR("Invalid number of steps", IGRAPH_EINVAL);
}
IGRAPH_CHECK(igraph_lazy_adjlist_init(graph, &adj, mode,
IGRAPH_DONT_SIMPLIFY));
IGRAPH_FINALLY(igraph_lazy_adjlist_destroy, &adj);
IGRAPH_CHECK(igraph_vector_resize(walk, steps));
RNG_BEGIN();
VECTOR(*walk)[0] = start;
for (i = 1; i < steps; i++) {
igraph_vector_t *neis;
igraph_integer_t nn;
neis = igraph_lazy_adjlist_get(&adj, start);
nn = igraph_vector_size(neis);
if (IGRAPH_UNLIKELY(nn == 0)) {
igraph_vector_resize(walk, i);
if (stuck == IGRAPH_RANDOM_WALK_STUCK_RETURN) {
break;
} else {
IGRAPH_ERROR("Random walk got stuck", IGRAPH_ERWSTUCK);
}
}
start = VECTOR(*walk)[i] = VECTOR(*neis)[ RNG_INTEGER(0, nn - 1) ];
}
RNG_END();
igraph_lazy_adjlist_destroy(&adj);
IGRAPH_FINALLY_CLEAN(1);
return 0;
}