本文整理汇总了C++中IGRAPH_ERROR函数的典型用法代码示例。如果您正苦于以下问题:C++ IGRAPH_ERROR函数的具体用法?C++ IGRAPH_ERROR怎么用?C++ IGRAPH_ERROR使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了IGRAPH_ERROR函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: igraph_local_scan_0_them
int igraph_local_scan_0_them(const igraph_t *us, const igraph_t *them,
igraph_vector_t *res,
const igraph_vector_t *weights_them,
igraph_neimode_t mode) {
igraph_t is;
if (igraph_vcount(us) != igraph_vcount(them)) {
IGRAPH_ERROR("Number of vertices don't match in scan-0", IGRAPH_EINVAL);
}
if (igraph_is_directed(us) != igraph_is_directed(them)) {
IGRAPH_ERROR("Directedness don't match in scan-0", IGRAPH_EINVAL);
}
if (weights_them) {
return igraph_i_local_scan_0_them_w(us, them, res, weights_them, mode);
}
igraph_intersection(&is, us, them, /*edgemap1=*/ 0, /*edgemap2=*/ 0);
IGRAPH_FINALLY(igraph_destroy, &is);
igraph_degree(&is, res, igraph_vss_all(), mode, IGRAPH_LOOPS);
igraph_destroy(&is);
IGRAPH_FINALLY_CLEAN(1);
return 0;
}
示例2: igraph_maximum_bipartite_matching
/**
* \function igraph_maximum_bipartite_matching
* Calculates a maximum matching in a bipartite graph.
*
* A matching in a bipartite graph is a partial assignment of vertices
* of the first kind to vertices of the second kind such that each vertex of
* the first kind is matched to at most one vertex of the second kind and
* vice versa, and matched vertices must be connected by an edge in the graph.
* The size (or cardinality) of a matching is the number of edges.
* A matching is a maximum matching if there exists no other matching with
* larger cardinality. For weighted graphs, a maximum matching is a matching
* whose edges have the largest possible total weight among all possible
* matchings.
*
* </para><para>
* Maximum matchings in bipartite graphs are found by the push-relabel algorithm
* with greedy initialization and a global relabeling after every n/2 steps where
* n is the number of vertices in the graph.
*
* </para><para>
* References: Cherkassky BV, Goldberg AV, Martin P, Setubal JC and Stolfi J:
* Augment or push: A computational study of bipartite matching and
* unit-capacity flow algorithms. ACM Journal of Experimental Algorithmics 3,
* 1998.
*
* </para><para>
* Kaya K, Langguth J, Manne F and Ucar B: Experiments on push-relabel-based
* maximum cardinality matching algorithms for bipartite graphs. Technical
* Report TR/PA/11/33 of the Centre Europeen de Recherche et de Formation
* Avancee en Calcul Scientifique, 2011.
*
* \param graph The input graph. It can be directed but the edge directions
* will be ignored.
* \param types Boolean vector giving the vertex types of the graph.
* \param matching_size The size of the matching (i.e. the number of matched
* vertex pairs will be returned here). It may be \c NULL
* if you don't need this.
* \param matching_weight The weight of the matching if the edges are weighted,
* or the size of the matching again if the edges are
* unweighted. It may be \c NULL if you don't need this.
* \param matching The matching itself. It must be a vector where element i
* contains the ID of the vertex that vertex i is matched to,
* or -1 if vertex i is unmatched.
* \param weights A null pointer (=no edge weights), or a vector giving the
* weights of the edges. Note that the algorithm is stable
* only for integer weights.
* \param eps A small real number used in equality tests in the weighted
* bipartite matching algorithm. Two real numbers are considered
* equal in the algorithm if their difference is smaller than
* \c eps. This is required to avoid the accumulation of numerical
* errors. It is advised to pass a value derived from the
* \c DBL_EPSILON constant in \c float.h here. If you are
* running the algorithm with no \c weights vector, this argument
* is ignored.
* \return Error code.
*
* Time complexity: O(sqrt(|V|) |E|) for unweighted graphs (according to the
* technical report referenced above), O(|V||E|) for weighted graphs.
*
* \example examples/simple/igraph_maximum_bipartite_matching.c
*/
int igraph_maximum_bipartite_matching(const igraph_t* graph,
const igraph_vector_bool_t* types, igraph_integer_t* matching_size,
igraph_real_t* matching_weight, igraph_vector_long_t* matching,
const igraph_vector_t* weights, igraph_real_t eps) {
/* Sanity checks */
if (igraph_vector_bool_size(types) < igraph_vcount(graph)) {
IGRAPH_ERROR("types vector too short", IGRAPH_EINVAL);
}
if (weights && igraph_vector_size(weights) < igraph_ecount(graph)) {
IGRAPH_ERROR("weights vector too short", IGRAPH_EINVAL);
}
if (weights == 0) {
IGRAPH_CHECK(igraph_i_maximum_bipartite_matching_unweighted(graph, types,
matching_size, matching));
if (matching_weight != 0) {
*matching_weight = *matching_size;
}
return IGRAPH_SUCCESS;
} else {
return igraph_i_maximum_bipartite_matching_weighted(graph, types,
matching_size, matching_weight, matching, weights, eps);
}
}
示例3: igraph_adjlist_init
int igraph_adjlist_init(const igraph_t *graph, igraph_adjlist_t *al,
igraph_neimode_t mode) {
long int i;
if (mode != IGRAPH_IN && mode != IGRAPH_OUT && mode != IGRAPH_ALL) {
IGRAPH_ERROR("Cannot create adjlist view", IGRAPH_EINVMODE);
}
if (!igraph_is_directed(graph)) { mode=IGRAPH_ALL; }
al->length=igraph_vcount(graph);
al->adjs=igraph_Calloc(al->length, igraph_vector_t);
if (al->adjs == 0) {
IGRAPH_ERROR("Cannot create adjlist view", IGRAPH_ENOMEM);
}
IGRAPH_FINALLY(igraph_adjlist_destroy, al);
for (i=0; i<al->length; i++) {
IGRAPH_ALLOW_INTERRUPTION();
IGRAPH_CHECK(igraph_vector_init(&al->adjs[i], 0));
IGRAPH_CHECK(igraph_neighbors(graph, &al->adjs[i], i, mode));
}
IGRAPH_FINALLY_CLEAN(1);
return 0;
}
示例4: igraph_sample_dirichlet
int igraph_sample_dirichlet(igraph_integer_t n, const igraph_vector_t *alpha,
igraph_matrix_t *res) {
igraph_integer_t len=igraph_vector_size(alpha);
igraph_integer_t i;
igraph_vector_t vec;
if (n < 0) {
IGRAPH_ERROR("Number of samples should be non-negative",
IGRAPH_EINVAL);
}
if (len < 2) {
IGRAPH_ERROR("Dirichlet parameter vector too short, must "
"have at least two entries", IGRAPH_EINVAL);
}
if (igraph_vector_min(alpha) <= 0) {
IGRAPH_ERROR("Dirichlet concentration parameters must be positive",
IGRAPH_EINVAL);
}
IGRAPH_CHECK(igraph_matrix_resize(res, len, n));
RNG_BEGIN();
for (i = 0; i < n; i++) {
igraph_vector_view(&vec, &MATRIX(*res, 0, i), len);
igraph_rng_get_dirichlet(igraph_rng_default(), alpha, &vec);
}
RNG_END();
return 0;
}
示例5: igraph_get_eid
int igraph_get_eid(const igraph_t *graph, igraph_integer_t *eid,
igraph_integer_t pfrom, igraph_integer_t pto,
igraph_bool_t directed) {
long int from=pfrom, to=pto;
long int nov=igraph_vcount(graph);
if (from < 0 || to < 0 || from > nov-1 || to > nov-1) {
IGRAPH_ERROR("cannot get edge id", IGRAPH_EINVVID);
}
*eid=-1;
if (igraph_is_directed(graph)) {
/* Directed graph */
FIND_DIRECTED_EDGE(graph,from,to,eid);
if (!directed && *eid < 0) {
FIND_DIRECTED_EDGE(graph,to,from,eid);
}
} else {
/* Undirected graph, they only have one mode */
FIND_UNDIRECTED_EDGE(graph,from,to,eid);
}
if (*eid < 0) {
IGRAPH_ERROR("Cannot get edge id, no such edge", IGRAPH_EINVAL);
}
return IGRAPH_SUCCESS;
}
示例6: igraph_inclist_init
int igraph_inclist_init(const igraph_t *graph,
igraph_inclist_t *il,
igraph_neimode_t mode) {
long int i;
if (mode != IGRAPH_IN && mode != IGRAPH_OUT && mode != IGRAPH_ALL) {
IGRAPH_ERROR("Cannot create incidence list view", IGRAPH_EINVMODE);
}
if (!igraph_is_directed(graph)) { mode=IGRAPH_ALL; }
il->length=igraph_vcount(graph);
il->incs=igraph_Calloc(il->length, igraph_vector_t);
if (il->incs == 0) {
IGRAPH_ERROR("Cannot create incidence list view", IGRAPH_ENOMEM);
}
IGRAPH_FINALLY(igraph_inclist_destroy, il);
for (i=0; i<il->length; i++) {
IGRAPH_ALLOW_INTERRUPTION();
IGRAPH_CHECK(igraph_vector_init(&il->incs[i], 0));
IGRAPH_CHECK(igraph_incident(graph, &il->incs[i], i, mode));
}
IGRAPH_FINALLY_CLEAN(1);
return 0;
}
示例7: igraph_empty_attrs
/**
* \ingroup interface
* \function igraph_empty_attrs
* \brief Creates an empty graph with some vertices, no edges and some graph attributes.
*
* </para><para>
* Use this instead of \ref igraph_empty() if you wish to add some graph
* attributes right after initialization. This function is currently
* not very interesting for the ordinary user, just supply 0 here or
* use \ref igraph_empty().
* \param graph Pointer to a not-yet initialized graph object.
* \param n The number of vertices in the graph, a non-negative
* integer number is expected.
* \param directed Whether the graph is directed or not.
* \param attr The attributes.
* \return Error code:
* \c IGRAPH_EINVAL: invalid number of vertices.
*
* Time complexity: O(|V|) for a graph with
* |V| vertices (and no edges).
*/
int igraph_empty_attrs(igraph_t *graph, igraph_integer_t n, igraph_bool_t directed, void* attr) {
if (n<0) {
IGRAPH_ERROR("cannot create empty graph with negative number of vertices",
IGRAPH_EINVAL);
}
if (!IGRAPH_FINITE(n)) {
IGRAPH_ERROR("number of vertices is not finite (NA, NaN or Inf)", IGRAPH_EINVAL);
}
graph->n=0;
graph->directed=directed;
IGRAPH_VECTOR_INIT_FINALLY(&graph->from, 0);
IGRAPH_VECTOR_INIT_FINALLY(&graph->to, 0);
IGRAPH_VECTOR_INIT_FINALLY(&graph->oi, 0);
IGRAPH_VECTOR_INIT_FINALLY(&graph->ii, 0);
IGRAPH_VECTOR_INIT_FINALLY(&graph->os, 1);
IGRAPH_VECTOR_INIT_FINALLY(&graph->is, 1);
VECTOR(graph->os)[0]=0;
VECTOR(graph->is)[0]=0;
/* init attributes */
graph->attr=0;
IGRAPH_CHECK(igraph_i_attribute_init(graph, attr));
/* add the vertices */
IGRAPH_CHECK(igraph_add_vertices(graph, n, 0));
IGRAPH_FINALLY_CLEAN(6);
return 0;
}
示例8: igraph_i_kleitman_wang_index
// Choose vertices in the order of their IDs.
static int igraph_i_kleitman_wang_index(const igraph_vector_t *outdeg, const igraph_vector_t *indeg, igraph_vector_t *edges) {
long n = igraph_vector_size(indeg); // number of vertices
long ec = 0; // number of edges added so far
typedef std::list<vbd_pair> vlist;
vlist vertices;
for (int i=0; i < n; ++i)
vertices.push_back(vbd_pair(i, bidegree(VECTOR(*indeg)[i], VECTOR(*outdeg)[i])));
std::vector<vlist::iterator> pointers;
pointers.reserve(n);
for (vlist::iterator it = vertices.begin(); it != vertices.end(); ++it)
pointers.push_back(it);
for (std::vector<vlist::iterator>::iterator pt = pointers.begin(); pt != pointers.end(); ++pt) {
// sort vertices by (in, out) degree pairs in decreasing order
// note: std::list::sort does a stable sort
vertices.sort(degree_greater<vbd_pair>);
// choose a vertex the out-stubs of which will be connected
vbd_pair &vd = **pt;
if (vd.degree.second == 0)
continue;
if (vd.degree.first < 0 || vd.degree.second < 0)
IGRAPH_ERROR("Vertex degrees must be positive", IGRAPH_EINVAL);
int k = 0;
vlist::iterator it;
for (it = vertices.begin();
k != vd.degree.second && it != vertices.end();
++it)
{
if (it->vertex == vd.vertex)
continue;
if (--(it->degree.first) < 0)
goto fail;
VECTOR(*edges)[2*(ec+k)] = vd.vertex;
VECTOR(*edges)[2*(ec+k)+1] = it->vertex;
++k;
}
if (it == vertices.end() && k < vd.degree.second)
goto fail;
ec += vd.degree.second;
vd.degree.second = 0;
}
return IGRAPH_SUCCESS;
fail:
IGRAPH_ERROR("The given directed degree sequence is not realizable", IGRAPH_EINVAL);
}
示例9: igraph_adjlist_init_complementer
int igraph_adjlist_init_complementer(const igraph_t *graph,
igraph_adjlist_t *al,
igraph_neimode_t mode,
igraph_bool_t loops) {
long int i, j, k, n;
igraph_bool_t* seen;
igraph_vector_t vec;
if (mode != IGRAPH_IN && mode != IGRAPH_OUT && mode != IGRAPH_ALL) {
IGRAPH_ERROR("Cannot create complementer adjlist view", IGRAPH_EINVMODE);
}
if (!igraph_is_directed(graph)) { mode=IGRAPH_ALL; }
al->length=igraph_vcount(graph);
al->adjs=igraph_Calloc(al->length, igraph_vector_t);
if (al->adjs == 0) {
IGRAPH_ERROR("Cannot create complementer adjlist view", IGRAPH_ENOMEM);
}
IGRAPH_FINALLY(igraph_adjlist_destroy, al);
n=al->length;
seen=igraph_Calloc(n, igraph_bool_t);
if (seen==0) {
IGRAPH_ERROR("Cannot create complementer adjlist view", IGRAPH_ENOMEM);
}
IGRAPH_FINALLY(igraph_free, seen);
IGRAPH_VECTOR_INIT_FINALLY(&vec, 0);
for (i=0; i<al->length; i++) {
IGRAPH_ALLOW_INTERRUPTION();
igraph_neighbors(graph, &vec, i, mode);
memset(seen, 0, sizeof(igraph_bool_t)*al->length);
n=al->length;
if (!loops) { seen[i] = 1; n--; }
for (j=0; j<igraph_vector_size(&vec); j++) {
if (! seen [ (long int) VECTOR(vec)[j] ] ) {
n--;
seen[ (long int) VECTOR(vec)[j] ] = 1;
}
}
IGRAPH_CHECK(igraph_vector_init(&al->adjs[i], n));
for (j=0, k=0; k<n; j++) {
if (!seen[j]) {
VECTOR(al->adjs[i])[k++] = j;
}
}
}
igraph_Free(seen);
igraph_vector_destroy(&vec);
IGRAPH_FINALLY_CLEAN(3);
return 0;
}
示例10: igraph_i_havel_hakimi
// Generate undirected realization as edge-list.
// If largest=true, always choose the vertex with the largest remaining degree to connect up next.
// Otherwise, always choose the one with the smallest remaining degree.
static int igraph_i_havel_hakimi(const igraph_vector_t *deg, igraph_vector_t *edges, bool largest) {
long n = igraph_vector_size(deg);
long ec = 0; // number of edges added so far
std::vector<vd_pair> vertices;
vertices.reserve(n);
for (int i=0; i < n; ++i)
vertices.push_back(vd_pair(i, VECTOR(*deg)[i]));
while (! vertices.empty()) {
if (largest)
std::stable_sort(vertices.begin(), vertices.end(), degree_less<vd_pair>);
else
std::stable_sort(vertices.begin(), vertices.end(), degree_greater<vd_pair>);
// take the next vertex to be connected up
vd_pair vd = vertices.back();
vertices.pop_back();
if (vd.degree < 0)
IGRAPH_ERROR("Vertex degrees must be positive", IGRAPH_EINVAL);
if (vd.degree == 0)
continue;
if (vertices.size() < size_t(vd.degree))
goto fail;
if (largest) {
for (int i=0; i < vd.degree; ++i) {
if (--(vertices[vertices.size() - 1 - i].degree) < 0)
goto fail;
VECTOR(*edges)[2*(ec+i)] = vd.vertex;
VECTOR(*edges)[2*(ec+i)+1] = vertices[vertices.size() - 1 - i].vertex;
}
} else {
// this loop can only be reached if all zero-degree nodes have already been removed
// therefore decrementing remaining degrees is safe
for (int i=0; i < vd.degree; ++i) {
vertices[i].degree--;
VECTOR(*edges)[2*(ec+i)] = vd.vertex;
VECTOR(*edges)[2*(ec+i)+1] = vertices[i].vertex;
}
}
ec += vd.degree;
}
return IGRAPH_SUCCESS;
fail:
IGRAPH_ERROR("The given degree sequence is not realizable", IGRAPH_EINVAL);
}
示例11: igraph_eigen_matrix_symmetric
int igraph_eigen_matrix_symmetric(const igraph_matrix_t *A,
const igraph_sparsemat_t *sA,
igraph_arpack_function_t *fun, int n,
void *extra,
igraph_eigen_algorithm_t algorithm,
const igraph_eigen_which_t *which,
igraph_arpack_options_t *options,
igraph_arpack_storage_t *storage,
igraph_vector_t *values,
igraph_matrix_t *vectors) {
IGRAPH_CHECK(igraph_i_eigen_checks(A, sA, fun, n));
if (which->pos != IGRAPH_EIGEN_LM &&
which->pos != IGRAPH_EIGEN_SM &&
which->pos != IGRAPH_EIGEN_LA &&
which->pos != IGRAPH_EIGEN_SA &&
which->pos != IGRAPH_EIGEN_BE &&
which->pos != IGRAPH_EIGEN_ALL &&
which->pos != IGRAPH_EIGEN_INTERVAL &&
which->pos != IGRAPH_EIGEN_SELECT) {
IGRAPH_ERROR("Invalid 'pos' position in 'which'", IGRAPH_EINVAL);
}
switch (algorithm) {
case IGRAPH_EIGEN_AUTO:
if (which->howmany==n || n < 100) {
IGRAPH_CHECK(igraph_i_eigen_matrix_symmetric_lapack(A, sA, fun, n,
extra, which,
values, vectors));
} else {
IGRAPH_CHECK(igraph_i_eigen_matrix_symmetric_arpack(A, sA, fun, n,
extra, which,
options, storage,
values, vectors));
}
break;
case IGRAPH_EIGEN_LAPACK:
IGRAPH_CHECK(igraph_i_eigen_matrix_symmetric_lapack(A, sA, fun, n ,extra,
which, values,
vectors));
break;
case IGRAPH_EIGEN_ARPACK:
IGRAPH_CHECK(igraph_i_eigen_matrix_symmetric_arpack(A, sA, fun, n, extra,
which, options,
storage,
values, vectors));
break;
default:
IGRAPH_ERROR("Unknown 'algorithm'", IGRAPH_EINVAL);
}
return 0;
}
示例12: igraph_i_maximal_or_largest_cliques_or_indsets
int igraph_i_maximal_or_largest_cliques_or_indsets(const igraph_t *graph,
igraph_vector_ptr_t *res,
igraph_integer_t *clique_number,
igraph_bool_t keep_only_largest,
igraph_bool_t complementer) {
igraph_i_max_ind_vsets_data_t clqdata;
long int no_of_nodes = igraph_vcount(graph), i;
if (igraph_is_directed(graph))
IGRAPH_WARNING("directionality of edges is ignored for directed graphs");
clqdata.matrix_size=no_of_nodes;
clqdata.keep_only_largest=keep_only_largest;
if (complementer)
IGRAPH_CHECK(igraph_adjlist_init_complementer(graph, &clqdata.adj_list, IGRAPH_ALL, 0));
else
IGRAPH_CHECK(igraph_adjlist_init(graph, &clqdata.adj_list, IGRAPH_ALL));
IGRAPH_FINALLY(igraph_adjlist_destroy, &clqdata.adj_list);
clqdata.IS = igraph_Calloc(no_of_nodes, igraph_integer_t);
if (clqdata.IS == 0)
IGRAPH_ERROR("igraph_i_maximal_or_largest_cliques_or_indsets failed", IGRAPH_ENOMEM);
IGRAPH_FINALLY(igraph_free, clqdata.IS);
IGRAPH_VECTOR_INIT_FINALLY(&clqdata.deg, no_of_nodes);
for (i=0; i<no_of_nodes; i++)
VECTOR(clqdata.deg)[i] = igraph_vector_size(igraph_adjlist_get(&clqdata.adj_list, i));
clqdata.buckets = igraph_Calloc(no_of_nodes+1, igraph_set_t);
if (clqdata.buckets == 0)
IGRAPH_ERROR("igraph_maximal_or_largest_cliques_or_indsets failed", IGRAPH_ENOMEM);
IGRAPH_FINALLY(igraph_i_free_set_array, clqdata.buckets);
for (i=0; i<no_of_nodes; i++)
IGRAPH_CHECK(igraph_set_init(&clqdata.buckets[i], 0));
if (res) igraph_vector_ptr_clear(res);
/* Do the show */
clqdata.largest_set_size=0;
IGRAPH_CHECK(igraph_i_maximal_independent_vertex_sets_backtrack(graph, res, &clqdata, 0));
/* Cleanup */
for (i=0; i<no_of_nodes; i++) igraph_set_destroy(&clqdata.buckets[i]);
igraph_adjlist_destroy(&clqdata.adj_list);
igraph_vector_destroy(&clqdata.deg);
igraph_free(clqdata.IS);
igraph_free(clqdata.buckets);
IGRAPH_FINALLY_CLEAN(4);
if (clique_number) *clique_number = clqdata.largest_set_size;
return 0;
}
示例13: igraph_random_walk
int igraph_random_walk(const igraph_t *graph, igraph_vector_t *walk,
igraph_integer_t start, igraph_neimode_t mode,
igraph_integer_t steps,
igraph_random_walk_stuck_t stuck) {
/* TODO:
- multiple walks potentially from multiple start vertices
- weights
*/
igraph_lazy_adjlist_t adj;
igraph_integer_t vc = igraph_vcount(graph);
igraph_integer_t i;
if (start < 0 || start >= vc) {
IGRAPH_ERROR("Invalid start vertex", IGRAPH_EINVAL);
}
if (steps < 0) {
IGRAPH_ERROR("Invalid number of steps", IGRAPH_EINVAL);
}
IGRAPH_CHECK(igraph_lazy_adjlist_init(graph, &adj, mode,
IGRAPH_DONT_SIMPLIFY));
IGRAPH_FINALLY(igraph_lazy_adjlist_destroy, &adj);
IGRAPH_CHECK(igraph_vector_resize(walk, steps));
RNG_BEGIN();
VECTOR(*walk)[0] = start;
for (i = 1; i < steps; i++) {
igraph_vector_t *neis;
igraph_integer_t nn;
neis = igraph_lazy_adjlist_get(&adj, start);
nn = igraph_vector_size(neis);
if (IGRAPH_UNLIKELY(nn == 0)) {
igraph_vector_resize(walk, i);
if (stuck == IGRAPH_RANDOM_WALK_STUCK_RETURN) {
break;
} else {
IGRAPH_ERROR("Random walk got stuck", IGRAPH_ERWSTUCK);
}
}
start = VECTOR(*walk)[i] = VECTOR(*neis)[ RNG_INTEGER(0, nn - 1) ];
}
RNG_END();
igraph_lazy_adjlist_destroy(&adj);
IGRAPH_FINALLY_CLEAN(1);
return 0;
}
示例14: igraph_i_havel_hakimi_index
// Choose vertices in the order of their IDs.
static int igraph_i_havel_hakimi_index(const igraph_vector_t *deg, igraph_vector_t *edges) {
long n = igraph_vector_size(deg);
long ec = 0; // number of edges added so far
typedef std::list<vd_pair> vlist;
vlist vertices;
for (int i=0; i < n; ++i)
vertices.push_back(vd_pair(i, VECTOR(*deg)[i]));
std::vector<vlist::iterator> pointers;
pointers.reserve(n);
for (vlist::iterator it = vertices.begin(); it != vertices.end(); ++it)
pointers.push_back(it);
for (std::vector<vlist::iterator>::iterator pt = pointers.begin(); pt != pointers.end(); ++pt) {
vertices.sort(degree_greater<vd_pair>);
vd_pair vd = **pt;
vertices.erase(*pt);
if (vd.degree < 0)
IGRAPH_ERROR("Vertex degrees must be positive", IGRAPH_EINVAL);
if (vd.degree == 0)
continue;
int k;
vlist::iterator it;
for (it = vertices.begin(), k = 0;
k != vd.degree && it != vertices.end();
++it, ++k)
{
if (--(it->degree) < 0)
goto fail;
VECTOR(*edges)[2*(ec+k)] = vd.vertex;
VECTOR(*edges)[2*(ec+k)+1] = it->vertex;
}
if (it == vertices.end() && k < vd.degree)
goto fail;
ec += vd.degree;
}
return IGRAPH_SUCCESS;
fail:
IGRAPH_ERROR("The given degree sequence is not realizable", IGRAPH_EINVAL);
}
示例15: igraph_create_bipartite
int igraph_create_bipartite(igraph_t *graph, const igraph_vector_bool_t *types,
const igraph_vector_t *edges,
igraph_bool_t directed) {
igraph_integer_t no_of_nodes=
(igraph_integer_t) igraph_vector_bool_size(types);
long int no_of_edges=igraph_vector_size(edges);
igraph_real_t min_edge=0, max_edge=0;
igraph_bool_t min_type=0, max_type=0;
long int i;
if (no_of_edges % 2 != 0) {
IGRAPH_ERROR("Invalid (odd) edges vector", IGRAPH_EINVEVECTOR);
}
no_of_edges /= 2;
if (no_of_edges != 0) {
igraph_vector_minmax(edges, &min_edge, &max_edge);
}
if (min_edge < 0 || max_edge >= no_of_nodes) {
IGRAPH_ERROR("Invalid (negative) vertex id", IGRAPH_EINVVID);
}
/* Check types vector */
if (no_of_nodes != 0) {
igraph_vector_bool_minmax(types, &min_type, &max_type);
if (min_type < 0 || max_type > 1) {
IGRAPH_WARNING("Non-binary type vector when creating a bipartite graph");
}
}
/* Check bipartiteness */
for (i=0; i<no_of_edges*2; i+=2) {
long int from=(long int) VECTOR(*edges)[i];
long int to=(long int) VECTOR(*edges)[i+1];
long int t1=VECTOR(*types)[from];
long int t2=VECTOR(*types)[to];
if ( (t1 && t2) || (!t1 && !t2) ) {
IGRAPH_ERROR("Invalid edges, not a bipartite graph", IGRAPH_EINVAL);
}
}
IGRAPH_CHECK(igraph_empty(graph, no_of_nodes, directed));
IGRAPH_FINALLY(igraph_destroy, graph);
IGRAPH_CHECK(igraph_add_edges(graph, edges, 0));
IGRAPH_FINALLY_CLEAN(1);
return 0;
}