当前位置: 首页>>代码示例>>C++>>正文


C++ IGRAPH_CHECK函数代码示例

本文整理汇总了C++中IGRAPH_CHECK函数的典型用法代码示例。如果您正苦于以下问题:C++ IGRAPH_CHECK函数的具体用法?C++ IGRAPH_CHECK怎么用?C++ IGRAPH_CHECK使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了IGRAPH_CHECK函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: igraph_i_bridges_rec

static int igraph_i_bridges_rec(const igraph_t *graph, const igraph_inclist_t *il, igraph_integer_t u, igraph_integer_t *time, igraph_vector_t *bridges, igraph_vector_bool_t *visited, igraph_vector_int_t *disc, igraph_vector_int_t *low, igraph_vector_int_t *parent) {
    igraph_vector_int_t *incedges;
    long nc; /* neighbour count */
    long i;

    VECTOR(*visited)[u] = 1;

    *time += 1;

    VECTOR(*disc)[u] = *time;
    VECTOR(*low)[u] = *time;

    incedges = igraph_inclist_get(il, u);
    nc = igraph_vector_int_size(incedges);
    for (i=0; i < nc; ++i) {
        long edge = (long) VECTOR(*incedges)[i];
        igraph_integer_t v = IGRAPH_TO(graph, edge) == u ? IGRAPH_FROM(graph, edge) : IGRAPH_TO(graph, edge);

        if (! VECTOR(*visited)[v]) {
            VECTOR(*parent)[v] = u;
            IGRAPH_CHECK(igraph_i_bridges_rec(graph, il, v, time, bridges, visited, disc, low, parent));

            VECTOR(*low)[u] = VECTOR(*low)[u] < VECTOR(*low)[v] ? VECTOR(*low)[u] : VECTOR(*low)[v];

            if (VECTOR(*low)[v] > VECTOR(*disc)[u])
                IGRAPH_CHECK(igraph_vector_push_back(bridges, edge));
        }
        else if (v != VECTOR(*parent)[u]) {
            VECTOR(*low)[u] = VECTOR(*low)[u] < VECTOR(*disc)[v] ? VECTOR(*low)[u] : VECTOR(*disc)[v];
        }
    }

    return IGRAPH_SUCCESS;
}
开发者ID:igraph,项目名称:igraph,代码行数:34,代码来源:components.c

示例2: igraph_adjlist_init

int igraph_adjlist_init(const igraph_t *graph, igraph_adjlist_t *al, 
			  igraph_neimode_t mode) {
  long int i;

  if (mode != IGRAPH_IN && mode != IGRAPH_OUT && mode != IGRAPH_ALL) {
    IGRAPH_ERROR("Cannot create adjlist view", IGRAPH_EINVMODE);
  }

  if (!igraph_is_directed(graph)) { mode=IGRAPH_ALL; }

  al->length=igraph_vcount(graph);
  al->adjs=igraph_Calloc(al->length, igraph_vector_t);
  if (al->adjs == 0) {
    IGRAPH_ERROR("Cannot create adjlist view", IGRAPH_ENOMEM);
  }

  IGRAPH_FINALLY(igraph_adjlist_destroy, al);
  for (i=0; i<al->length; i++) {
    IGRAPH_ALLOW_INTERRUPTION();
    IGRAPH_CHECK(igraph_vector_init(&al->adjs[i], 0));
    IGRAPH_CHECK(igraph_neighbors(graph, &al->adjs[i], i, mode));
  }

  IGRAPH_FINALLY_CLEAN(1);
  return 0;
}
开发者ID:CansenJIANG,项目名称:igraph,代码行数:26,代码来源:adjlist.c

示例3: igraph_i_largest_cliques_store

int igraph_i_largest_cliques_store(const igraph_vector_t* clique, void* data, igraph_bool_t* cont) {
  igraph_vector_ptr_t* result = (igraph_vector_ptr_t*)data;
  igraph_vector_t* vec;
  long int i, n;

  /* Is the current clique at least as large as the others that we have found? */
  if (!igraph_vector_ptr_empty(result)) {
    n = igraph_vector_size(clique);
    if (n < igraph_vector_size(VECTOR(*result)[0]))
      return IGRAPH_SUCCESS;

    if (n > igraph_vector_size(VECTOR(*result)[0])) {
      for (i = 0; i < igraph_vector_ptr_size(result); i++)
        igraph_vector_destroy(VECTOR(*result)[i]);
      igraph_vector_ptr_free_all(result);
      igraph_vector_ptr_resize(result, 0);
    }
  }

  vec = igraph_Calloc(1, igraph_vector_t);
  if (vec == 0)
    IGRAPH_ERROR("cannot allocate memory for storing next clique", IGRAPH_ENOMEM);

  IGRAPH_CHECK(igraph_vector_copy(vec, clique));
  IGRAPH_CHECK(igraph_vector_ptr_push_back(result, vec));

  return IGRAPH_SUCCESS;
}
开发者ID:CansenJIANG,项目名称:igraph,代码行数:28,代码来源:cliques.c

示例4: igraph_empty_attrs

/** 
 * \ingroup interface
 * \function igraph_empty_attrs
 * \brief Creates an empty graph with some vertices, no edges and some graph attributes.
 *
 * </para><para>
 * Use this instead of \ref igraph_empty() if you wish to add some graph
 * attributes right after initialization. This function is currently
 * not very interesting for the ordinary user, just supply 0 here or 
 * use \ref igraph_empty().
 * \param graph Pointer to a not-yet initialized graph object.
 * \param n The number of vertices in the graph, a non-negative
 *          integer number is expected.
 * \param directed Whether the graph is directed or not.
 * \param attr The attributes. 
 * \return Error code:
 *         \c IGRAPH_EINVAL: invalid number of vertices.
 * 
 * Time complexity: O(|V|) for a graph with
 * |V| vertices (and no edges).
 */
int igraph_empty_attrs(igraph_t *graph, igraph_integer_t n, igraph_bool_t directed, void* attr) {

  if (n<0) {
    IGRAPH_ERROR("cannot create empty graph with negative number of vertices",
		  IGRAPH_EINVAL);
  }
  
  if (!IGRAPH_FINITE(n)) {
    IGRAPH_ERROR("number of vertices is not finite (NA, NaN or Inf)", IGRAPH_EINVAL);
  }

  graph->n=0;
  graph->directed=directed;
  IGRAPH_VECTOR_INIT_FINALLY(&graph->from, 0);
  IGRAPH_VECTOR_INIT_FINALLY(&graph->to, 0);
  IGRAPH_VECTOR_INIT_FINALLY(&graph->oi, 0);
  IGRAPH_VECTOR_INIT_FINALLY(&graph->ii, 0);
  IGRAPH_VECTOR_INIT_FINALLY(&graph->os, 1);
  IGRAPH_VECTOR_INIT_FINALLY(&graph->is, 1);

  VECTOR(graph->os)[0]=0;
  VECTOR(graph->is)[0]=0;

  /* init attributes */
  graph->attr=0;
  IGRAPH_CHECK(igraph_i_attribute_init(graph, attr));

  /* add the vertices */
  IGRAPH_CHECK(igraph_add_vertices(graph, n, 0));
  
  IGRAPH_FINALLY_CLEAN(6);
  return 0;
}
开发者ID:AlexWoroschilow,项目名称:wurst-alphabet,代码行数:54,代码来源:type_indexededgelist.c

示例5: igraph_add_vertices

/**
 * \ingroup interface
 * \function igraph_add_vertices
 * \brief Adds vertices to a graph. 
 *
 * </para><para>
 * This function invalidates all iterators.
 *
 * \param graph The graph object to extend.
 * \param nv Non-negative integer giving the number of 
 *           vertices to add.
 * \param attr The attributes of the new vertices, only used by 
 *           high level interfaces, you can supply 0 here.
 * \return Error code: 
 *         \c IGRAPH_EINVAL: invalid number of new
 *         vertices. 
 *
 * Time complexity: O(|V|) where
 * |V| is 
 * the number of vertices in the \em new, extended graph.
 */
int igraph_add_vertices(igraph_t *graph, igraph_integer_t nv, void *attr) {
  long int ec=igraph_ecount(graph);
  long int i;

  if (nv < 0) {
    IGRAPH_ERROR("cannot add negative number of vertices", IGRAPH_EINVAL);
  }

  IGRAPH_CHECK(igraph_vector_reserve(&graph->os, graph->n+nv+1));
  IGRAPH_CHECK(igraph_vector_reserve(&graph->is, graph->n+nv+1));
  
  igraph_vector_resize(&graph->os, graph->n+nv+1); /* reserved */
  igraph_vector_resize(&graph->is, graph->n+nv+1); /* reserved */
  for (i=graph->n+1; i<graph->n+nv+1; i++) {
    VECTOR(graph->os)[i]=ec;
    VECTOR(graph->is)[i]=ec;
  }
  
  graph->n += nv;   
  
  if (graph->attr) {
    IGRAPH_CHECK(igraph_i_attribute_add_vertices(graph, nv, attr));
  }

  return 0;
}
开发者ID:AlexWoroschilow,项目名称:wurst-alphabet,代码行数:47,代码来源:type_indexededgelist.c

示例6: igraph_similarity_inverse_log_weighted

int igraph_similarity_inverse_log_weighted(const igraph_t *graph,
  igraph_matrix_t *res, const igraph_vs_t vids, igraph_neimode_t mode) {
  igraph_vector_t weights;
  igraph_neimode_t mode0;
  long int i, no_of_nodes;

  switch (mode) {
    case IGRAPH_OUT: mode0 = IGRAPH_IN; break;
    case IGRAPH_IN: mode0 = IGRAPH_OUT; break;
    default: mode0 = IGRAPH_ALL;
  }

  no_of_nodes = igraph_vcount(graph);

  IGRAPH_VECTOR_INIT_FINALLY(&weights, no_of_nodes);
  IGRAPH_CHECK(igraph_degree(graph, &weights, igraph_vss_all(), mode0, 1));
  for (i=0; i < no_of_nodes; i++) {
    if (VECTOR(weights)[i] > 1)
      VECTOR(weights)[i] = 1.0 / log(VECTOR(weights)[i]);
  }

  IGRAPH_CHECK(igraph_cocitation_real(graph, res, vids, mode0, &weights));
  igraph_vector_destroy(&weights);
  IGRAPH_FINALLY_CLEAN(1);
  return 0;
}
开发者ID:AlessiaWent,项目名称:igraph,代码行数:26,代码来源:cocitation.c

示例7: igraph_i_eigen_matrix_lapack_common

int igraph_i_eigen_matrix_lapack_common(const igraph_matrix_t *A,
					const igraph_eigen_which_t *which, 
					igraph_vector_complex_t *values,
					igraph_matrix_complex_t *vectors) {

  igraph_vector_t valuesreal, valuesimag;
  igraph_matrix_t vectorsright, *myvectors= vectors ? &vectorsright : 0;
  int n=(int) igraph_matrix_nrow(A);
  int info=1;

  IGRAPH_VECTOR_INIT_FINALLY(&valuesreal, n);
  IGRAPH_VECTOR_INIT_FINALLY(&valuesimag, n);
  if (vectors) { IGRAPH_MATRIX_INIT_FINALLY(&vectorsright, n, n); }
  IGRAPH_CHECK(igraph_lapack_dgeev(A, &valuesreal, &valuesimag, 
				   /*vectorsleft=*/ 0, myvectors, &info));

  IGRAPH_CHECK(igraph_i_eigen_matrix_lapack_reorder(&valuesreal, 
						    &valuesimag, 
						    myvectors, which, values,
						    vectors));
  
  if (vectors) { 
    igraph_matrix_destroy(&vectorsright);
    IGRAPH_FINALLY_CLEAN(1);
  }
  
  igraph_vector_destroy(&valuesimag);
  igraph_vector_destroy(&valuesreal);
  IGRAPH_FINALLY_CLEAN(2);

  return 0;
  
}
开发者ID:AlessiaWent,项目名称:igraph,代码行数:33,代码来源:eigen.c

示例8: igraph_attribute_combination

int igraph_attribute_combination(igraph_attribute_combination_t *comb, ...) {

  va_list ap;

  IGRAPH_CHECK(igraph_attribute_combination_init(comb));
  
  va_start(ap, comb);
  while (1) { 
    void *func=0;
    igraph_attribute_combination_type_t type;
    const char *name;
    
    name=va_arg(ap, const char *);
    
    if (name == IGRAPH_NO_MORE_ATTRIBUTES) { break; }
    
    type=(igraph_attribute_combination_type_t)va_arg(ap, int);
    if (type == IGRAPH_ATTRIBUTE_COMBINE_FUNCTION) {
      func=va_arg(ap, void*);      
    }

    if (strlen(name)==0) { name=0; }
    
    IGRAPH_CHECK(igraph_attribute_combination_add(comb, name, type, func));
  }
开发者ID:AlessiaWent,项目名称:igraph,代码行数:25,代码来源:attributes.c

示例9: igraph_similarity_jaccard_es

/**
 * \ingroup structural
 * \function igraph_similarity_jaccard_es
 * \brief Jaccard similarity coefficient for a given edge selector.
 *
 * </para><para>
 * The Jaccard similarity coefficient of two vertices is the number of common
 * neighbors divided by the number of vertices that are neighbors of at
 * least one of the two vertices being considered. This function calculates
 * the pairwise Jaccard similarities for the endpoints of edges in a given edge
 * selector.
 *
 * \param graph The graph object to analyze
 * \param res Pointer to a vector, the result of the calculation will
 *        be stored here. The number of elements is the same as the number
 *        of edges in \p es.
 * \param es An edge selector that specifies the edges to be included in the
 *        result.
 * \param mode The type of neighbors to be used for the calculation in
 *        directed graphs. Possible values:
 *        \clist
 *        \cli IGRAPH_OUT
 *          the outgoing edges will be considered for each node.
 *        \cli IGRAPH_IN
 *          the incoming edges will be considered for each node.
 *        \cli IGRAPH_ALL
 *          the directed graph is considered as an undirected one for the
 *          computation.
 *        \endclist
 * \param loops Whether to include the vertices themselves in the neighbor
 *        sets.
 * \return Error code:
 *        \clist
 *        \cli IGRAPH_ENOMEM
 *           not enough memory for temporary data.
 *        \cli IGRAPH_EINVVID
 *           invalid vertex id passed.
 *        \cli IGRAPH_EINVMODE
 *           invalid mode argument.
 *        \endclist
 * 
 * Time complexity: O(nd), n is the number of edges in the edge selector, d is
 * the (maximum) degree of the vertices in the graph.
 *
 * \sa \ref igraph_similarity_jaccard() and \ref igraph_similarity_jaccard_pairs()
 *   to calculate the Jaccard similarity between all pairs of a vertex set or
 *   some selected vertex pairs, or \ref igraph_similarity_dice(),
 *   \ref igraph_similarity_dice_pairs() and \ref igraph_similarity_dice_es() for a
 *   measure very similar to the Jaccard coefficient
 * 
 * \example examples/simple/igraph_similarity.c
 */
int igraph_similarity_jaccard_es(const igraph_t *graph, igraph_vector_t *res,
	const igraph_es_t es, igraph_neimode_t mode, igraph_bool_t loops) {
  igraph_vector_t v;
  igraph_eit_t eit;

  IGRAPH_VECTOR_INIT_FINALLY(&v, 0);

  IGRAPH_CHECK(igraph_eit_create(graph, es, &eit));
  IGRAPH_FINALLY(igraph_eit_destroy, &eit);

  while (!IGRAPH_EIT_END(eit)) {
    long int eid = IGRAPH_EIT_GET(eit);
    igraph_vector_push_back(&v, IGRAPH_FROM(graph, eid));
    igraph_vector_push_back(&v, IGRAPH_TO(graph, eid));
    IGRAPH_EIT_NEXT(eit);
  }

  igraph_eit_destroy(&eit);
  IGRAPH_FINALLY_CLEAN(1);

  IGRAPH_CHECK(igraph_similarity_jaccard_pairs(graph, res, &v, mode, loops));
  igraph_vector_destroy(&v);
  IGRAPH_FINALLY_CLEAN(1);

  return IGRAPH_SUCCESS;
}
开发者ID:AlessiaWent,项目名称:igraph,代码行数:78,代码来源:cocitation.c

示例10: igraph_inclist_init

int igraph_inclist_init(const igraph_t *graph, 
			      igraph_inclist_t *il, 
			      igraph_neimode_t mode) {
  long int i;

  if (mode != IGRAPH_IN && mode != IGRAPH_OUT && mode != IGRAPH_ALL) {
    IGRAPH_ERROR("Cannot create incidence list view", IGRAPH_EINVMODE);
  }

  if (!igraph_is_directed(graph)) { mode=IGRAPH_ALL; }

  il->length=igraph_vcount(graph);
  il->incs=igraph_Calloc(il->length, igraph_vector_t);
  if (il->incs == 0) {
    IGRAPH_ERROR("Cannot create incidence list view", IGRAPH_ENOMEM);
  }

  IGRAPH_FINALLY(igraph_inclist_destroy, il);  
  for (i=0; i<il->length; i++) {
    IGRAPH_ALLOW_INTERRUPTION();
    IGRAPH_CHECK(igraph_vector_init(&il->incs[i], 0));
    IGRAPH_CHECK(igraph_incident(graph, &il->incs[i], i, mode));
  }
  
  IGRAPH_FINALLY_CLEAN(1);
  return 0;
}
开发者ID:CansenJIANG,项目名称:igraph,代码行数:27,代码来源:adjlist.c

示例11: igraph_get_edgelist

int igraph_get_edgelist(const igraph_t *graph, igraph_vector_t *res, igraph_bool_t bycol) {

  igraph_eit_t edgeit;
  long int no_of_edges=igraph_ecount(graph);
  long int vptr=0;
  igraph_integer_t from, to;
  
  IGRAPH_CHECK(igraph_vector_resize(res, no_of_edges*2));
  IGRAPH_CHECK(igraph_eit_create(graph, igraph_ess_all(IGRAPH_EDGEORDER_ID),
				 &edgeit));
  IGRAPH_FINALLY(igraph_eit_destroy, &edgeit);
  
  if (bycol) {
    while (!IGRAPH_EIT_END(edgeit)) {
      igraph_edge(graph, IGRAPH_EIT_GET(edgeit), &from, &to);
      VECTOR(*res)[vptr]=from;
      VECTOR(*res)[vptr+no_of_edges]=to;
      vptr++;
      IGRAPH_EIT_NEXT(edgeit);
    }
  } else {
    while (!IGRAPH_EIT_END(edgeit)) {
      igraph_edge(graph, IGRAPH_EIT_GET(edgeit), &from, &to);
      VECTOR(*res)[vptr++]=from;
      VECTOR(*res)[vptr++]=to;
      IGRAPH_EIT_NEXT(edgeit);
    }
  }
  
  igraph_eit_destroy(&edgeit);
  IGRAPH_FINALLY_CLEAN(1);
  return 0;
}
开发者ID:AlexWoroschilow,项目名称:wurst-alphabet,代码行数:33,代码来源:conversion.c

示例12: igraph_is_separator

int igraph_is_separator(const igraph_t *graph, 
			const igraph_vs_t candidate,
			igraph_bool_t *res) {

  long int no_of_nodes=igraph_vcount(graph);
  igraph_vector_bool_t removed;
  igraph_dqueue_t Q;
  igraph_vector_t neis;
  igraph_vit_t vit;

  IGRAPH_CHECK(igraph_vit_create(graph, candidate, &vit));
  IGRAPH_FINALLY(igraph_vit_destroy, &vit);
  IGRAPH_CHECK(igraph_vector_bool_init(&removed, no_of_nodes));
  IGRAPH_FINALLY(igraph_vector_bool_destroy, &removed);
  IGRAPH_CHECK(igraph_dqueue_init(&Q, 100));
  IGRAPH_FINALLY(igraph_dqueue_destroy, &Q);
  IGRAPH_VECTOR_INIT_FINALLY(&neis, 0);

  IGRAPH_CHECK(igraph_i_is_separator(graph, &vit, -1, res, &removed, 
				     &Q, &neis, no_of_nodes));

  igraph_vector_destroy(&neis);
  igraph_dqueue_destroy(&Q);
  igraph_vector_bool_destroy(&removed);
  igraph_vit_destroy(&vit);
  IGRAPH_FINALLY_CLEAN(4);

  return 0;
}
开发者ID:dacapo1142,项目名称:igraph,代码行数:29,代码来源:separators.c

示例13: igraph_matrix_complex_imag

int igraph_matrix_complex_imag(const igraph_matrix_complex_t *v,
			       igraph_matrix_t *imag) {
  long int nrow=igraph_matrix_complex_nrow(v);
  long int ncol=igraph_matrix_complex_ncol(v);
  IGRAPH_CHECK(igraph_matrix_resize(imag, nrow, ncol));
  IGRAPH_CHECK(igraph_vector_complex_imag(&v->data, &imag->data));
  return 0;
}
开发者ID:FEYoung,项目名称:rigraph,代码行数:8,代码来源:matrix.c

示例14: igraph_matrix_complex_real

int igraph_matrix_complex_real(const igraph_matrix_complex_t *v,
			       igraph_matrix_t *real) {
  long int nrow=igraph_matrix_complex_nrow(v);
  long int ncol=igraph_matrix_complex_ncol(v);
  IGRAPH_CHECK(igraph_matrix_resize(real, nrow, ncol));
  IGRAPH_CHECK(igraph_vector_complex_real(&v->data, &real->data));
  return 0;
}
开发者ID:FEYoung,项目名称:rigraph,代码行数:8,代码来源:matrix.c

示例15: igraph_i_multilevel_simplify_multiple

/* removes multiple edges and returns new edge id's for each edge in |E|log|E| */
int igraph_i_multilevel_simplify_multiple(igraph_t *graph, igraph_vector_t *eids) {
  long int ecount = igraph_ecount(graph);
  long int i, l = -1, last_from = -1, last_to = -1;
  igraph_bool_t directed = igraph_is_directed(graph);
  igraph_integer_t from, to;
  igraph_vector_t edges;
  igraph_i_multilevel_link *links;

  /* Make sure there's enough space in eids to store the new edge IDs */
  IGRAPH_CHECK(igraph_vector_resize(eids, ecount));

  links = igraph_Calloc(ecount, igraph_i_multilevel_link);
  if (links == 0) {
    IGRAPH_ERROR("multi-level community structure detection failed", IGRAPH_ENOMEM);
  }
  IGRAPH_FINALLY(free, links);

  for (i = 0; i < ecount; i++) {
    igraph_edge(graph, (igraph_integer_t) i, &from, &to);
    links[i].from = from;
    links[i].to = to;
    links[i].id = i;
  }  

  qsort((void*)links, (size_t) ecount, sizeof(igraph_i_multilevel_link),
      igraph_i_multilevel_link_cmp);

  IGRAPH_VECTOR_INIT_FINALLY(&edges, 0);
  for (i = 0; i < ecount; i++) {
    if (links[i].from == last_from && links[i].to == last_to) {
      VECTOR(*eids)[links[i].id] = l;
      continue;
    }

    last_from = links[i].from;
    last_to = links[i].to;

    igraph_vector_push_back(&edges, last_from);
    igraph_vector_push_back(&edges, last_to);

    l++;

    VECTOR(*eids)[links[i].id] = l;
  }

  free(links);
  IGRAPH_FINALLY_CLEAN(1);

  igraph_destroy(graph);
  IGRAPH_CHECK(igraph_create(graph, &edges, igraph_vcount(graph), directed));

  igraph_vector_destroy(&edges);
  IGRAPH_FINALLY_CLEAN(1);

  return 0;
}
开发者ID:drishti95,项目名称:Randomisation,代码行数:57,代码来源:bgldet.c


注:本文中的IGRAPH_CHECK函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。