当前位置: 首页>>代码示例>>C++>>正文


C++ IDCT_range_limit函数代码示例

本文整理汇总了C++中IDCT_range_limit函数的典型用法代码示例。如果您正苦于以下问题:C++ IDCT_range_limit函数的具体用法?C++ IDCT_range_limit怎么用?C++ IDCT_range_limit使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了IDCT_range_limit函数的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: jpeg_idct_float

jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
     JCOEFPTR coef_block,
     JSAMPARRAY output_buf, JDIMENSION output_col)
{
  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
  FAST_FLOAT z5, z10, z11, z12, z13;
  JCOEFPTR inptr;
  FLOAT_MULT_TYPE * quantptr;
  FAST_FLOAT * wsptr;
  JSAMPROW outptr;
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  int ctr;
  FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
  SHIFT_TEMPS

  /* Pass 1: process columns from input, store into work array. */

  inptr = coef_block;
  quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
  wsptr = workspace;
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
    /* Due to quantization, we will usually find that many of the input
     * coefficients are zero, especially the AC terms.  We can exploit this
     * by short-circuiting the IDCT calculation for any column in which all
     * the AC terms are zero.  In that case each output is equal to the
     * DC coefficient (with scale factor as needed).
     * With typical images and quantization tables, half or more of the
     * column DCT calculations can be simplified this way.
     */

    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
        inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
        inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
        inptr[DCTSIZE*7] == 0) {
      /* AC terms all zero */
      FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);

      wsptr[DCTSIZE*0] = dcval;
      wsptr[DCTSIZE*1] = dcval;
      wsptr[DCTSIZE*2] = dcval;
      wsptr[DCTSIZE*3] = dcval;
      wsptr[DCTSIZE*4] = dcval;
      wsptr[DCTSIZE*5] = dcval;
      wsptr[DCTSIZE*6] = dcval;
      wsptr[DCTSIZE*7] = dcval;

      inptr++;      /* advance pointers to next column */
      quantptr++;
      wsptr++;
      continue;
    }

    /* Even part */

    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);

    tmp10 = tmp0 + tmp2;  /* phase 3 */
    tmp11 = tmp0 - tmp2;

    tmp13 = tmp1 + tmp3;  /* phases 5-3 */
    tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */

    tmp0 = tmp10 + tmp13; /* phase 2 */
    tmp3 = tmp10 - tmp13;
    tmp1 = tmp11 + tmp12;
    tmp2 = tmp11 - tmp12;

    /* Odd part */

    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);

    z13 = tmp6 + tmp5;    /* phase 6 */
    z10 = tmp6 - tmp5;
    z11 = tmp4 + tmp7;
    z12 = tmp4 - tmp7;

    tmp7 = z11 + z13;   /* phase 5 */
    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */

    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */

    tmp6 = tmp12 - tmp7;  /* phase 2 */
    tmp5 = tmp11 - tmp6;
    tmp4 = tmp10 + tmp5;

    wsptr[DCTSIZE*0] = tmp0 + tmp7;
    wsptr[DCTSIZE*7] = tmp0 - tmp7;
    wsptr[DCTSIZE*1] = tmp1 + tmp6;
    wsptr[DCTSIZE*6] = tmp1 - tmp6;
    wsptr[DCTSIZE*2] = tmp2 + tmp5;
    wsptr[DCTSIZE*5] = tmp2 - tmp5;
//.........这里部分代码省略.........
开发者ID:airhuman,项目名称:cwf,代码行数:101,代码来源:jidctflt.c

示例2: jpeg_idct_islow

jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
		 JCOEFPTR coef_block,
		 JSAMPARRAY output_buf, JDIMENSION output_col)
{
  IJG_INT32 tmp0, tmp1, tmp2, tmp3;
  IJG_INT32 tmp10, tmp11, tmp12, tmp13;
  IJG_INT32 z1, z2, z3, z4, z5;
  JCOEFPTR inptr;
  ISLOW_MULT_TYPE * quantptr;
  int * wsptr;
  JSAMPROW outptr;
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  int ctr;
  int workspace[DCTSIZE2];	/* buffers data between passes */
  SHIFT_TEMPS

  /* Pass 1: process columns from input, store into work array. */
  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
  /* furthermore, we scale the results by 2**PASS1_BITS. */

  inptr = coef_block;
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  wsptr = workspace;
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
    /* Due to quantization, we will usually find that many of the input
     * coefficients are zero, especially the AC terms.  We can exploit this
     * by short-circuiting the IDCT calculation for any column in which all
     * the AC terms are zero.  In that case each output is equal to the
     * DC coefficient (with scale factor as needed).
     * With typical images and quantization tables, half or more of the
     * column DCT calculations can be simplified this way.
     */
    
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
	inptr[DCTSIZE*7] == 0) {
      /* AC terms all zero */
      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
      
      wsptr[DCTSIZE*0] = dcval;
      wsptr[DCTSIZE*1] = dcval;
      wsptr[DCTSIZE*2] = dcval;
      wsptr[DCTSIZE*3] = dcval;
      wsptr[DCTSIZE*4] = dcval;
      wsptr[DCTSIZE*5] = dcval;
      wsptr[DCTSIZE*6] = dcval;
      wsptr[DCTSIZE*7] = dcval;
      
      inptr++;			/* advance pointers to next column */
      quantptr++;
      wsptr++;
      continue;
    }
    
    /* Even part: reverse the even part of the forward DCT. */
    /* The rotator is sqrt(2)*c(-6). */
    
    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
    
    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
    
    z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);

    tmp0 = (z2 + z3) << CONST_BITS;
    tmp1 = (z2 - z3) << CONST_BITS;
    
    tmp10 = tmp0 + tmp3;
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    /* Odd part per figure 8; the matrix is unitary and hence its
     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
     */
    
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    
    z1 = tmp0 + tmp3;
    z2 = tmp1 + tmp2;
    z3 = tmp0 + tmp2;
    z4 = tmp1 + tmp3;
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    
    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    
//.........这里部分代码省略.........
开发者ID:151706061,项目名称:ClearCanvas,代码行数:101,代码来源:jidctint.c

示例3: openexif_jpeg_idct_4x4

openexif_jpeg_idct_4x4 (oe_j_decompress_ptr cinfo, openexif_jpeg_component_info * compptr,
	       OE_JCOEFPTR coef_block,
	       OE_JSAMPARRAY output_buf, OE_JDIMENSION output_col)
{
  INT32 tmp0, tmp2, tmp10, tmp12;
  INT32 z1, z2, z3, z4;
  OE_JCOEFPTR inptr;
  ISLOW_MULT_TYPE * quantptr;
  int * wsptr;
  OE_JSAMPROW outptr;
  OE_JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  int ctr;
  int workspace[DCTSIZE*4];	/* buffers data between passes */
  SHIFT_TEMPS

  /* Pass 1: process columns from input, store into work array. */

  inptr = coef_block;
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  wsptr = workspace;
  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
    /* Don't bother to process column 4, because second pass won't use it */
    if (ctr == DCTSIZE-4)
      continue;
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
	inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
      /* AC terms all zero; we need not examine term 4 for 4x4 output */
      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
      
      wsptr[DCTSIZE*0] = dcval;
      wsptr[DCTSIZE*1] = dcval;
      wsptr[DCTSIZE*2] = dcval;
      wsptr[DCTSIZE*3] = dcval;
      
      continue;
    }
    
    /* Even part */
    
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    tmp0 <<= (CONST_BITS+1);
    
    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);

    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
    
    tmp10 = tmp0 + tmp2;
    tmp12 = tmp0 - tmp2;
    
    /* Odd part */
    
    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    
    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
    
    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */

    /* Final output stage */
    
    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
    wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
    wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
  }
  
  /* Pass 2: process 4 rows from work array, store into output array. */

  wsptr = workspace;
  for (ctr = 0; ctr < 4; ctr++) {
    outptr = output_buf[ctr] + output_col;
    /* It's not clear whether a zero row test is worthwhile here ... */

#ifndef NO_ZERO_ROW_TEST
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
      /* AC terms all zero */
      OE_JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
				  & RANGE_MASK];
      
      outptr[0] = dcval;
      outptr[1] = dcval;
      outptr[2] = dcval;
      outptr[3] = dcval;
      
      wsptr += DCTSIZE;		/* advance pointer to next row */
      continue;
    }
#endif
    
//.........这里部分代码省略.........
开发者ID:23pointsNorth,项目名称:libmv,代码行数:101,代码来源:OpenExif_jidctred.cpp

示例4: openexif_jpeg_idct_2x2

openexif_jpeg_idct_2x2 (oe_j_decompress_ptr cinfo, openexif_jpeg_component_info * compptr,
	       OE_JCOEFPTR coef_block,
	       OE_JSAMPARRAY output_buf, OE_JDIMENSION output_col)
{
  INT32 tmp0, tmp10, z1;
  OE_JCOEFPTR inptr;
  ISLOW_MULT_TYPE * quantptr;
  int * wsptr;
  OE_JSAMPROW outptr;
  OE_JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  int ctr;
  int workspace[DCTSIZE*2];	/* buffers data between passes */
  SHIFT_TEMPS

  /* Pass 1: process columns from input, store into work array. */

  inptr = coef_block;
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  wsptr = workspace;
  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
    /* Don't bother to process columns 2,4,6 */
    if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
      continue;
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
      
      wsptr[DCTSIZE*0] = dcval;
      wsptr[DCTSIZE*1] = dcval;
      
      continue;
    }
    
    /* Even part */
    
    z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    tmp10 = z1 << (CONST_BITS+2);
    
    /* Odd part */

    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
    z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
    z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
    z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */

    /* Final output stage */
    
    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
    wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
  }
  
  /* Pass 2: process 2 rows from work array, store into output array. */

  wsptr = workspace;
  for (ctr = 0; ctr < 2; ctr++) {
    outptr = output_buf[ctr] + output_col;
    /* It's not clear whether a zero row test is worthwhile here ... */

#ifndef NO_ZERO_ROW_TEST
    if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
      /* AC terms all zero */
      OE_JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
				  & RANGE_MASK];
      
      outptr[0] = dcval;
      outptr[1] = dcval;
      
      wsptr += DCTSIZE;		/* advance pointer to next row */
      continue;
    }
#endif
    
    /* Even part */
    
    tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
    
    /* Odd part */

    tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
	 + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
	 + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
	 + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */

    /* Final output stage */
    
    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
					  CONST_BITS+PASS1_BITS+3+2)
			    & RANGE_MASK];
    outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
					  CONST_BITS+PASS1_BITS+3+2)
			    & RANGE_MASK];
    
    wsptr += DCTSIZE;		/* advance pointer to next row */
  }
}
开发者ID:23pointsNorth,项目名称:libmv,代码行数:100,代码来源:OpenExif_jidctred.cpp

示例5: jpeg_idct_ifast

jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
		 JCOEFPTR coef_block,
		 JSAMPARRAY output_buf, JDIMENSION output_col)
{
  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  DCTELEM tmp10, tmp11, tmp12, tmp13;
  DCTELEM z5, z10, z11, z12, z13;
  JCOEFPTR inptr;
  IFAST_MULT_TYPE * quantptr;
  int * wsptr;
  JSAMPROW outptr;
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  int ctr;
  int workspace[DCTSIZE2];	/* buffers data between passes */
  SHIFT_TEMPS			/* for DESCALE */
  ISHIFT_TEMPS			/* for IDESCALE */

  /* Pass 1: process columns from input, store into work array. */

  inptr = coef_block;
  quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
  wsptr = workspace;
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
    /* Due to quantization, we will usually find that many of the input
     * coefficients are zero, especially the AC terms.  We can exploit this
     * by short-circuiting the IDCT calculation for any column in which all
     * the AC terms are zero.  In that case each output is equal to the
     * DC coefficient (with scale factor as needed).
     * With typical images and quantization tables, half or more of the
     * column DCT calculations can be simplified this way.
     */
    
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
	inptr[DCTSIZE*7] == 0) {
      /* AC terms all zero */
      int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);

      wsptr[DCTSIZE*0] = dcval;
      wsptr[DCTSIZE*1] = dcval;
      wsptr[DCTSIZE*2] = dcval;
      wsptr[DCTSIZE*3] = dcval;
      wsptr[DCTSIZE*4] = dcval;
      wsptr[DCTSIZE*5] = dcval;
      wsptr[DCTSIZE*6] = dcval;
      wsptr[DCTSIZE*7] = dcval;
      
      inptr++;			/* advance pointers to next column */
      quantptr++;
      wsptr++;
      continue;
    }
    
    /* Even part */

    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);

    tmp10 = tmp0 + tmp2;	/* phase 3 */
    tmp11 = tmp0 - tmp2;

    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */

    tmp0 = tmp10 + tmp13;	/* phase 2 */
    tmp3 = tmp10 - tmp13;
    tmp1 = tmp11 + tmp12;
    tmp2 = tmp11 - tmp12;
    
    /* Odd part */

    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);

    z13 = tmp6 + tmp5;		/* phase 6 */
    z10 = tmp6 - tmp5;
    z11 = tmp4 + tmp7;
    z12 = tmp4 - tmp7;

    tmp7 = z11 + z13;		/* phase 5 */
    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */

    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */

    tmp6 = tmp12 - tmp7;	/* phase 2 */
    tmp5 = tmp11 - tmp6;
    tmp4 = tmp10 + tmp5;

    wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
    wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
    wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
    wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
    wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
//.........这里部分代码省略.........
开发者ID:jhoare,项目名称:myro-cpp,代码行数:101,代码来源:jidctfst.c


注:本文中的IDCT_range_limit函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。