当前位置: 首页>>代码示例>>C++>>正文


C++ HAL_RCC_GetPCLK2Freq函数代码示例

本文整理汇总了C++中HAL_RCC_GetPCLK2Freq函数的典型用法代码示例。如果您正苦于以下问题:C++ HAL_RCC_GetPCLK2Freq函数的具体用法?C++ HAL_RCC_GetPCLK2Freq怎么用?C++ HAL_RCC_GetPCLK2Freq使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了HAL_RCC_GetPCLK2Freq函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: set_baud_rate

static void set_baud_rate(USART_TypeDef *usart, int baud)
{
    if (usart->CR1 & USART_CR1_OVER8) {
        if (usart == USART1 || usart == USART6) {
            usart->BRR = __UART_BRR_SAMPLING8(HAL_RCC_GetPCLK2Freq(), baud);
        } else {
            usart->BRR = __UART_BRR_SAMPLING8(HAL_RCC_GetPCLK1Freq(), baud);
        }
    } else {
        if (usart == USART1 || usart == USART6) {
            usart->BRR = __UART_BRR_SAMPLING16(HAL_RCC_GetPCLK2Freq(), baud);
        } else {
            usart->BRR = __UART_BRR_SAMPLING16(HAL_RCC_GetPCLK1Freq(), baud);
        }
    }
}
开发者ID:Ewardlei,项目名称:grbl_stm32f4,代码行数:16,代码来源:usart.c

示例2: IRDA_SetConfig

/**
  * @brief  Configures the IRDA peripheral. 
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval None
  */
static void IRDA_SetConfig(IRDA_HandleTypeDef *hirda)
{
  /* Check the parameters */
  assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate));  
  assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength));
  assert_param(IS_IRDA_PARITY(hirda->Init.Parity));
  assert_param(IS_IRDA_MODE(hirda->Init.Mode));
  
  /*------- IRDA-associated USART registers setting : CR2 Configuration ------*/
  /* Clear STOP[13:12] bits */
  CLEAR_BIT(hirda->Instance->CR2, USART_CR2_STOP);
  
  /*------- IRDA-associated USART registers setting : CR1 Configuration ------*/
  /* Configure the USART Word Length, Parity and mode: 
     Set the M bits according to hirda->Init.WordLength value 
     Set PCE and PS bits according to hirda->Init.Parity value
     Set TE and RE bits according to hirda->Init.Mode value */
  MODIFY_REG(hirda->Instance->CR1,
             ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE)),
             (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode);
  
  /*------- IRDA-associated USART registers setting : CR3 Configuration ------*/
  /* Clear CTSE and RTSE bits */
  CLEAR_BIT(hirda->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE));
  
  /*------- IRDA-associated USART registers setting : BRR Configuration ------*/
  if(hirda->Instance == USART1)
  {
    hirda->Instance->BRR = IRDA_BRR(HAL_RCC_GetPCLK2Freq(), hirda->Init.BaudRate);
  }
  else
  {
    hirda->Instance->BRR = IRDA_BRR(HAL_RCC_GetPCLK1Freq(), hirda->Init.BaudRate);
  }
}
开发者ID:EverSince,项目名称:STM32-AD7156,代码行数:41,代码来源:stm32l1xx_hal_irda.c

示例3: spi_get_clock_freq

/*
 * Only the frequency is managed in the family specific part
 * the rest of SPI management is common to all STM32 families
 */
int spi_get_clock_freq(spi_t *obj) {
    struct spi_s *spiobj = SPI_S(obj);
	int spi_hz = 0;

	/* Get source clock depending on SPI instance */
    switch ((int)spiobj->spi) {
        case SPI_1:
#if defined SPI4_BASE
        case SPI_4:
#endif
#if defined SPI5_BASE
        case SPI_5:
#endif
#if defined SPI6_BASE
        case SPI_6:
#endif
            /* SPI_1, SPI_4, SPI_5 and SPI_6. Source CLK is PCKL2 */
            spi_hz = HAL_RCC_GetPCLK2Freq();
            break;
        case SPI_2:
#if defined SPI3_BASE
        case SPI_3:
#endif
            /* SPI_2 and SPI_3. Source CLK is PCKL1 */
            spi_hz = HAL_RCC_GetPCLK1Freq();
            break;
        default:
            error("CLK: SPI instance not set");
            break;
    }
    return spi_hz;
}
开发者ID:Archcady,项目名称:mbed-os,代码行数:36,代码来源:spi_api.c

示例4: HAL_TIM_IC_CaptureCallback

/**
  * @brief  Conversion complete callback in non blocking mode 
  * @param  htim: TIM handle
  * @retval None
  */
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
  if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
  {
    if(uhCaptureIndex == 0)
    {
      /* Get the 1st Input Capture value */
      uwIC2Value1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
      uhCaptureIndex = 1;
    }
    else if(uhCaptureIndex == 1)
    {
      /* Get the 2nd Input Capture value */
      uwIC2Value2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2); 
      
      /* Capture computation */
      if (uwIC2Value2 > uwIC2Value1)
      {
        uwDiffCapture = (uwIC2Value2 - uwIC2Value1); 
      }
      else  /* (uwIC2Value2 <= uwIC2Value1) */
      {
        uwDiffCapture = ((0xFFFF - uwIC2Value1) + uwIC2Value2); 
      }

      /* Frequency computation: for this example TIMx (TIM1) is clocked by
         2xAPB2Clk */      
      uwFrequency = (2*HAL_RCC_GetPCLK2Freq()) / uwDiffCapture;
      uhCaptureIndex = 0;
    } 
  }
}
开发者ID:451506709,项目名称:automated_machine,代码行数:37,代码来源:main.c

示例5: uart_get_baudrate

uint32_t uart_get_baudrate(pyb_uart_obj_t *self) {
    uint32_t uart_clk = 0;

    #if defined(STM32F0)
    uart_clk = HAL_RCC_GetPCLK1Freq();
    #elif defined(STM32F7)
    switch ((RCC->DCKCFGR2 >> ((self->uart_id - 1) * 2)) & 3) {
        case 0:
            if (self->uart_id == 1 || self->uart_id == 6) {
                uart_clk = HAL_RCC_GetPCLK2Freq();
            } else {
                uart_clk = HAL_RCC_GetPCLK1Freq();
            }
            break;
        case 1:
            uart_clk = HAL_RCC_GetSysClockFreq();
            break;
        case 2:
            uart_clk = HSI_VALUE;
            break;
        case 3:
            uart_clk = LSE_VALUE;
            break;
    }
    #elif defined(STM32H7)
    uint32_t csel;
    if (self->uart_id == 1 || self->uart_id == 6) {
        csel = RCC->D2CCIP2R >> 3;
    } else {
开发者ID:pfalcon,项目名称:micropython,代码行数:29,代码来源:uart.c

示例6: spi_frequency

void spi_frequency(spi_t *obj, int hz)
{
    int spi_hz = 0;
	uint8_t prescaler_rank = 0;

	/* Get source clock depending on SPI instance */
    switch ((int)obj->spi) {
        case SPI_1:
			/* SPI_1. Source CLK is PCKL2 */
			spi_hz = HAL_RCC_GetPCLK2Freq();
			break;
		case SPI_2:
			/* SPI_2. Source CLK is PCKL1 */
			spi_hz = HAL_RCC_GetPCLK1Freq();
			break;
		default:
			error("SPI instance not set");
    }

	/* Define pre-scaler in order to get highest available frequency below requested frequency */
	while ((spi_hz > hz) && (prescaler_rank < sizeof(baudrate_prescaler_table)/sizeof(baudrate_prescaler_table[0]))){
		spi_hz = spi_hz / 2;
		prescaler_rank++;
	}

	if (prescaler_rank <= sizeof(baudrate_prescaler_table)/sizeof(baudrate_prescaler_table[0])) {
		obj->br_presc = baudrate_prescaler_table[prescaler_rank-1];
	} else {
		error("Couldn't setup requested SPI frequency");
	}

    init_spi(obj);
}
开发者ID:AlessandroA,项目名称:mbed,代码行数:33,代码来源:spi_api.c

示例7: initTimers

void initTimers()
{
    TIM_HandleTypeDef TIM_Handle;

    // 10 kHz timer.
#if defined STM32F1
    __TIM8_CLK_ENABLE();
    TIM_Handle.Instance = TIM8;
    TIM_Handle.Init.Prescaler = (uint16_t)(HAL_RCC_GetPCLK2Freq() / 10000) - 1;
#elif defined STM32F2
    __TIM4_CLK_ENABLE();
    TIM_Handle.Instance = TIM4;
    TIM_Handle.Init.Prescaler = (uint16_t)(HAL_RCC_GetPCLK2Freq() / 100000) - 1;
#elif defined STM32F4
    __TIM3_CLK_ENABLE();
    TIM_Handle.Instance = TIM3;
    // TIM3 Clocked from SYSCLK = 168 MHz
    TIM_Handle.Init.Prescaler = (uint16_t)(HAL_RCC_GetSysClockFreq() / 10000) - 1;
#endif
    // 1 Hz blinking
    TIM_Handle.Init.Period = 10000;
    TIM_Handle.Init.ClockDivision = 0;
    TIM_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;

    HAL_TIM_Base_Init(&TIM_Handle);
    HAL_TIM_PWM_Init(&TIM_Handle);

    TIM_OC_InitTypeDef TIM_OCConfig;

    TIM_OCConfig.OCMode = TIM_OCMODE_PWM1;
    // 5000 / 10000 = 50% duty cycle.
    TIM_OCConfig.Pulse = 4999;
    TIM_OCConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
    TIM_OCConfig.OCFastMode = TIM_OCFAST_DISABLE;

#if defined STM32F1
    HAL_TIM_PWM_ConfigChannel(&TIM_Handle, &TIM_OCConfig, TIM_CHANNEL_3);
    HAL_TIM_PWM_Start(&TIM_Handle, TIM_CHANNEL_3);
#elif defined STM32F2
    HAL_TIM_PWM_ConfigChannel(&TIM_Handle, &TIM_OCConfig, TIM_CHANNEL_1);
    HAL_TIM_PWM_Start(&TIM_Handle, TIM_CHANNEL_1);
#elif defined STM32F4
    HAL_TIM_PWM_ConfigChannel(&TIM_Handle, &TIM_OCConfig, TIM_CHANNEL_1);
    HAL_TIM_PWM_Start(&TIM_Handle, TIM_CHANNEL_1);
#endif
}
开发者ID:Displacer,项目名称:stm32-cmake,代码行数:46,代码来源:main.c

示例8: pyb_freq

/// \function freq()
/// Return a tuple of clock frequencies: (SYSCLK, HCLK, PCLK1, PCLK2).
// TODO should also be able to set frequency via this function
STATIC mp_obj_t pyb_freq(void) {
    mp_obj_t tuple[4] = {
       mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
       mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
       mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
       mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
    };
    return mp_obj_new_tuple(4, tuple);
}
开发者ID:patrickhpunkt,项目名称:micropython,代码行数:12,代码来源:modpyb.c

示例9: IRDA_SetConfig

/**
  * @brief Configure the IRDA peripheral 
  * @param hirda: irda handle
  * @retval None
  */
static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda)
{
  uint32_t tmpreg                     = 0x00000000;
  IRDA_ClockSourceTypeDef clocksource = IRDA_CLOCKSOURCE_UNDEFINED;
  HAL_StatusTypeDef ret               = HAL_OK;  
  
  /* Check the communication parameters */ 
  assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate));  
  assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength));
  assert_param(IS_IRDA_PARITY(hirda->Init.Parity));
  assert_param(IS_IRDA_TX_RX_MODE(hirda->Init.Mode));
  assert_param(IS_IRDA_PRESCALER(hirda->Init.Prescaler)); 
  assert_param(IS_IRDA_POWERMODE(hirda->Init.PowerMode)); 

  /*-------------------------- USART CR1 Configuration -----------------------*/        
  /* Configure the IRDA Word Length, Parity and transfer Mode: 
     Set the M bits according to hirda->Init.WordLength value 
     Set PCE and PS bits according to hirda->Init.Parity value
     Set TE and RE bits according to hirda->Init.Mode value */
  tmpreg = (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode ;
  
  MODIFY_REG(hirda->Instance->CR1, IRDA_CR1_FIELDS, tmpreg);
  
  /*-------------------------- USART CR3 Configuration -----------------------*/
  MODIFY_REG(hirda->Instance->CR3, USART_CR3_IRLP, hirda->Init.PowerMode);
    
  /*-------------------------- USART GTPR Configuration ----------------------*/  
  MODIFY_REG(hirda->Instance->GTPR, USART_GTPR_PSC, hirda->Init.Prescaler);
  
  /*-------------------------- USART BRR Configuration -----------------------*/ 
  __HAL_IRDA_GETCLOCKSOURCE(hirda, clocksource);
  switch (clocksource)
  {
    case IRDA_CLOCKSOURCE_PCLK1: 
      hirda->Instance->BRR = (uint16_t)(HAL_RCC_GetPCLK1Freq() / hirda->Init.BaudRate);
      break;
    case IRDA_CLOCKSOURCE_PCLK2: 
      hirda->Instance->BRR = (uint16_t)(HAL_RCC_GetPCLK2Freq() / hirda->Init.BaudRate);
      break;
    case IRDA_CLOCKSOURCE_HSI: 
      hirda->Instance->BRR = (uint16_t)(HSI_VALUE / hirda->Init.BaudRate); 
      break; 
    case IRDA_CLOCKSOURCE_SYSCLK:  
      hirda->Instance->BRR = (uint16_t)(HAL_RCC_GetSysClockFreq() / hirda->Init.BaudRate);
      break;  
    case IRDA_CLOCKSOURCE_LSE:                
      hirda->Instance->BRR = (uint16_t)(LSE_VALUE / hirda->Init.BaudRate); 
      break;      
    case IRDA_CLOCKSOURCE_UNDEFINED:                
    default:                
      ret = HAL_ERROR; 
      break;              
  } 
  
  return ret;  
}
开发者ID:ramonnr,项目名称:STM32F303-watchdog-demo,代码行数:61,代码来源:stm32f3xx_hal_irda.c

示例10: py_cpufreq_get_current_frequencies

mp_obj_t py_cpufreq_get_current_frequencies()
{
    mp_obj_t tuple[4] = {
        mp_obj_new_int(cpufreq_get_cpuclk()   / (1000000)),
        mp_obj_new_int(HAL_RCC_GetHCLKFreq()  / (1000000)),
        mp_obj_new_int(HAL_RCC_GetPCLK1Freq() / (1000000)),
        mp_obj_new_int(HAL_RCC_GetPCLK2Freq() / (1000000)),
    };
    return mp_obj_new_tuple(4, tuple);
}
开发者ID:openmv,项目名称:openmv,代码行数:10,代码来源:py_cpufreq.c

示例11: SMARTCARD_SetConfig

/**
  * @brief  Configures the SMARTCARD peripheral. 
  * @param  hsc: Pointer to a SMARTCARD_HandleTypeDef structure that contains
  *                the configuration information for the specified SMARTCARD module.
  * @retval None
  */
static void SMARTCARD_SetConfig(SMARTCARD_HandleTypeDef *hsc)
{
  /* Check the parameters */
  assert_param(IS_SMARTCARD_INSTANCE(hsc->Instance));
  assert_param(IS_SMARTCARD_POLARITY(hsc->Init.CLKPolarity));
  assert_param(IS_SMARTCARD_PHASE(hsc->Init.CLKPhase));
  assert_param(IS_SMARTCARD_LASTBIT(hsc->Init.CLKLastBit));
  assert_param(IS_SMARTCARD_BAUDRATE(hsc->Init.BaudRate));  
  assert_param(IS_SMARTCARD_WORD_LENGTH(hsc->Init.WordLength));
  assert_param(IS_SMARTCARD_STOPBITS(hsc->Init.StopBits));
  assert_param(IS_SMARTCARD_PARITY(hsc->Init.Parity));
  assert_param(IS_SMARTCARD_MODE(hsc->Init.Mode));
  assert_param(IS_SMARTCARD_NACK_STATE(hsc->Init.NACKState));

  /* The LBCL, CPOL and CPHA bits have to be selected when both the transmitter and the
     receiver are disabled (TE=RE=0) to ensure that the clock pulses function correctly. */
  CLEAR_BIT(hsc->Instance->CR1, (uint32_t)(USART_CR1_TE | USART_CR1_RE));
  
  /*-------------------------- SMARTCARD CR2 Configuration ------------------------*/
  /* Clear CLKEN, CPOL, CPHA and LBCL bits */
  /* Configure the SMARTCARD Clock, CPOL, CPHA and LastBit -----------------------*/
  /* Set CPOL bit according to hsc->Init.CLKPolarity value */
  /* Set CPHA bit according to hsc->Init.CLKPhase value */
  /* Set LBCL bit according to hsc->Init.CLKLastBit value */
  MODIFY_REG(hsc->Instance->CR2, 
             ((uint32_t)(USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_CLKEN | USART_CR2_LBCL)),
             ((uint32_t)(USART_CR2_CLKEN | hsc->Init.CLKPolarity | hsc->Init.CLKPhase| hsc->Init.CLKLastBit)) );
  
  /* Set Stop Bits: Set STOP[13:12] bits according to hsc->Init.StopBits value */
  MODIFY_REG(hsc->Instance->CR2, USART_CR2_STOP,(uint32_t)(hsc->Init.StopBits));

  /*-------------------------- SMARTCARD CR1 Configuration -----------------------*/
  /* Clear M, PCE, PS, TE and RE bits */
  /* Configure the SMARTCARD Word Length, Parity and mode: 
     Set the M bits according to hsc->Init.WordLength value 
     Set PCE and PS bits according to hsc->Init.Parity value
     Set TE and RE bits according to hsc->Init.Mode value */
  MODIFY_REG(hsc->Instance->CR1, 
             ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE)),
             ((uint32_t)(hsc->Init.WordLength | hsc->Init.Parity | hsc->Init.Mode)) );

  /*-------------------------- USART CR3 Configuration -----------------------*/  
  /* Clear CTSE and RTSE bits */
  CLEAR_BIT(hsc->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE));

  /*-------------------------- USART BRR Configuration -----------------------*/
  if(hsc->Instance == USART1)
  {
    hsc->Instance->BRR = SMARTCARD_BRR(HAL_RCC_GetPCLK2Freq(), hsc->Init.BaudRate);
  }
  else
  {
    hsc->Instance->BRR = SMARTCARD_BRR(HAL_RCC_GetPCLK1Freq(), hsc->Init.BaudRate);
  }
}
开发者ID:1deus,项目名称:tmk_keyboard,代码行数:61,代码来源:stm32l1xx_hal_smartcard.c

示例12: spi_getClkFreqInst

/**
  * @brief  return clock freq of an SPI instance
  * @param  spi_inst : SPI instance
  * @retval clock freq of the instance else SystemCoreClock
  */
uint32_t spi_getClkFreqInst(SPI_TypeDef * spi_inst)
{
  uint32_t spi_freq = SystemCoreClock;

#ifdef STM32F0xx
  UNUSED(spi_inst);
  /* SPIx source CLK is PCKL1 */
  spi_freq = HAL_RCC_GetPCLK1Freq();
#else
  if(spi_inst != NP) {
    /* Get source clock depending on SPI instance */
    switch ((uint32_t)spi_inst) {
#if defined(SPI1_BASE) || defined(SPI4_BASE) || defined(SPI5_BASE) || defined(SPI16_BASE)
      /* Some STM32's (eg. STM32F302x8) have no SPI1, but do have SPI2/3. */
#if defined SPI1_BASE
      case (uint32_t)SPI1:
#endif
#if defined SPI4_BASE
      case (uint32_t)SPI4:
#endif
#if defined SPI5_BASE
      case (uint32_t)SPI5:
#endif
#if defined SPI6_BASE
      case (uint32_t)SPI6:
#endif
        /* SPI1, SPI4, SPI5 and SPI6. Source CLK is PCKL2 */
        spi_freq = HAL_RCC_GetPCLK2Freq();
        break;
#endif  /* SPI[1456]_BASE */

#if defined(SPI2_BASE) || defined (SPI3_BASE)
#if defined SPI2_BASE
      case (uint32_t)SPI2:
#endif
#if defined SPI3_BASE
      case (uint32_t)SPI3:
#endif
        /* SPI_2 and SPI_3. Source CLK is PCKL1 */
        spi_freq = HAL_RCC_GetPCLK1Freq();
        break;
#endif
      default:
        printf("CLK: SPI instance not set");
        break;
    }
  }
#endif
  return spi_freq;
}
开发者ID:amassou2017,项目名称:Arduino_Core_STM32,代码行数:55,代码来源:spi_com.c

示例13: timer_init

int timer_init(hacs_timer_t tim, hacs_timer_mode_t mode)
{
  uint32_t clock_freq;
  uint32_t presc;
  TIM_HandleTypeDef *htim = &tim_handles[tim];
  TIM_TypeDef *inst = hacs_tim_instances[tim];

  tim_overflow_cb[tim] = NULL;

  // First, find the appropriate prescaler to achieve microsecond resolution
  if (inst == TIM1 || inst == TIM10 || inst == TIM11) {
    // For stm32f411, these 3 timers are on the APB2 bus
    clock_freq = HAL_RCC_GetPCLK2Freq();
  } else {
    clock_freq = HAL_RCC_GetPCLK1Freq();
  }
  presc = clock_freq / TIMER_RESOLUTION_FREQ;

  // Setup timer base
  htim->Instance = inst;
  htim->Init.Prescaler = presc;
  htim->Init.CounterMode = TIM_COUNTERMODE_UP;
  htim->Init.Period = 0;
  htim->Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim->Init.RepetitionCounter = 0;
  HAL_TIM_Base_Init(htim);

  if (mode == HACS_TIMER_MODE_PWM) {
    TIM_OC_InitTypeDef sConfigOC;

    sConfigOC.OCMode = TIM_OCMODE_PWM1;
    sConfigOC.Pulse = 0;
    sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
    sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
    sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
    sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
    sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;

    // NOTE: Assume there are 4 PWM channels on each timer, and that all of them are used.
    HAL_TIM_PWM_ConfigChannel(htim, &sConfigOC, TIM_CHANNEL_1);
    HAL_TIM_PWM_ConfigChannel(htim, &sConfigOC, TIM_CHANNEL_2);
    HAL_TIM_PWM_ConfigChannel(htim, &sConfigOC, TIM_CHANNEL_3);
    HAL_TIM_PWM_ConfigChannel(htim, &sConfigOC, TIM_CHANNEL_4);
  }

  return HACS_NO_ERROR;
}
开发者ID:gzwsc2007,项目名称:Hobby_Airplane_Control_System,代码行数:47,代码来源:hacs_timer.c

示例14: HAL_InitTick

/**
  * @brief  This function configures the TIM1 as a time base source. 
  *         The time source is configured  to have 1ms time base with a dedicated 
  *         Tick interrupt priority. 
  * @note   This function is called  automatically at the beginning of program after
  *         reset by HAL_Init() or at any time when clock is configured, by HAL_RCC_ClockConfig(). 
  * @param  TickPriority: Tick interrupt priorty.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
  RCC_ClkInitTypeDef    clkconfig;
  uint32_t              uwTimclock = 0;
  uint32_t              uwPrescalerValue = 0;
  uint32_t              pFLatency;
  
  /*Configure the TIM1 IRQ priority */
  HAL_NVIC_SetPriority(TIM1_UP_TIM16_IRQn, TickPriority ,0); 
  
  /* Enable the TIM1 global Interrupt */
  HAL_NVIC_EnableIRQ(TIM1_UP_TIM16_IRQn); 
  
  /* Enable TIM1 clock */
  __HAL_RCC_TIM1_CLK_ENABLE();
  
  /* Get clock configuration */
  HAL_RCC_GetClockConfig(&clkconfig, &pFLatency);
  
  /* Compute TIM1 clock */
  uwTimclock = HAL_RCC_GetPCLK2Freq();
   
  /* Compute the prescaler value to have TIM1 counter clock equal to 1MHz */
  uwPrescalerValue = (uint32_t) ((uwTimclock / 1000000) - 1);
  
  /* Initialize TIM1 */
  htim1.Instance = TIM1;
  
  /* Initialize TIMx peripheral as follow:
  + Period = [(TIM1CLK/1000) - 1]. to have a (1/1000) s time base.
  + Prescaler = (uwTimclock/1000000 - 1) to have a 1MHz counter clock.
  + ClockDivision = 0
  + Counter direction = Up
  */
  htim1.Init.Period = (1000000 / 1000) - 1;
  htim1.Init.Prescaler = uwPrescalerValue;
  htim1.Init.ClockDivision = 0;
  htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  if(HAL_TIM_Base_Init(&htim1) == HAL_OK)
  {
    /* Start the TIM time Base generation in interrupt mode */
    return HAL_TIM_Base_Start_IT(&htim1);
  }
  
  /* Return function status */
  return HAL_ERROR;
}
开发者ID:tgack,项目名称:gnubio,代码行数:56,代码来源:stm32f3xx_hal_timebase_TIM.c

示例15: IRDA_SetConfig

/**
  * @brief  Configures the IRDA peripheral. 
  * @param  hirda: pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval None
  */
static void IRDA_SetConfig(IRDA_HandleTypeDef *hirda)
{
  uint32_t tmpreg = 0x00;
  
  /* Check the parameters */
  assert_param(IS_IRDA_INSTANCE(hirda->Instance));
  assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate));  
  assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength));
  assert_param(IS_IRDA_PARITY(hirda->Init.Parity));
  assert_param(IS_IRDA_MODE(hirda->Init.Mode));
  
  /*-------------------------- IRDA CR2 Configuration ------------------------*/
  /* Clear STOP[13:12] bits */
  hirda->Instance->CR2 &= (uint32_t)~((uint32_t)USART_CR2_STOP);
  
  /*-------------------------- USART CR1 Configuration -----------------------*/
  tmpreg = hirda->Instance->CR1;
  
  /* Clear M, PCE, PS, TE and RE bits */
  tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | \
    USART_CR1_RE));
  
  /* Configure the USART Word Length, Parity and mode: 
     Set the M bits according to hirda->Init.WordLength value 
     Set PCE and PS bits according to hirda->Init.Parity value
     Set TE and RE bits according to hirda->Init.Mode value */
  tmpreg |= (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode;
  
  /* Write to USART CR1 */
  hirda->Instance->CR1 = (uint32_t)tmpreg;
  
  /*-------------------------- USART CR3 Configuration -----------------------*/  
  /* Clear CTSE and RTSE bits */
  hirda->Instance->CR3 &= (uint32_t)~((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE));
  
  /*-------------------------- USART BRR Configuration -----------------------*/
  if((hirda->Instance == USART1) || (hirda->Instance == USART6))
  {
    hirda->Instance->BRR = __IRDA_BRR(HAL_RCC_GetPCLK2Freq(), hirda->Init.BaudRate);
  }
  else
  {
    hirda->Instance->BRR = __IRDA_BRR(HAL_RCC_GetPCLK1Freq(), hirda->Init.BaudRate);
  }
}
开发者ID:12019,项目名称:openmv,代码行数:51,代码来源:stm32f4xx_hal_irda.c


注:本文中的HAL_RCC_GetPCLK2Freq函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。