本文整理汇总了C++中HAL_RCC_GetPCLK2Freq函数的典型用法代码示例。如果您正苦于以下问题:C++ HAL_RCC_GetPCLK2Freq函数的具体用法?C++ HAL_RCC_GetPCLK2Freq怎么用?C++ HAL_RCC_GetPCLK2Freq使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了HAL_RCC_GetPCLK2Freq函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: set_baud_rate
static void set_baud_rate(USART_TypeDef *usart, int baud)
{
if (usart->CR1 & USART_CR1_OVER8) {
if (usart == USART1 || usart == USART6) {
usart->BRR = __UART_BRR_SAMPLING8(HAL_RCC_GetPCLK2Freq(), baud);
} else {
usart->BRR = __UART_BRR_SAMPLING8(HAL_RCC_GetPCLK1Freq(), baud);
}
} else {
if (usart == USART1 || usart == USART6) {
usart->BRR = __UART_BRR_SAMPLING16(HAL_RCC_GetPCLK2Freq(), baud);
} else {
usart->BRR = __UART_BRR_SAMPLING16(HAL_RCC_GetPCLK1Freq(), baud);
}
}
}
示例2: IRDA_SetConfig
/**
* @brief Configures the IRDA peripheral.
* @param hirda: Pointer to a IRDA_HandleTypeDef structure that contains
* the configuration information for the specified IRDA module.
* @retval None
*/
static void IRDA_SetConfig(IRDA_HandleTypeDef *hirda)
{
/* Check the parameters */
assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate));
assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength));
assert_param(IS_IRDA_PARITY(hirda->Init.Parity));
assert_param(IS_IRDA_MODE(hirda->Init.Mode));
/*------- IRDA-associated USART registers setting : CR2 Configuration ------*/
/* Clear STOP[13:12] bits */
CLEAR_BIT(hirda->Instance->CR2, USART_CR2_STOP);
/*------- IRDA-associated USART registers setting : CR1 Configuration ------*/
/* Configure the USART Word Length, Parity and mode:
Set the M bits according to hirda->Init.WordLength value
Set PCE and PS bits according to hirda->Init.Parity value
Set TE and RE bits according to hirda->Init.Mode value */
MODIFY_REG(hirda->Instance->CR1,
((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE)),
(uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode);
/*------- IRDA-associated USART registers setting : CR3 Configuration ------*/
/* Clear CTSE and RTSE bits */
CLEAR_BIT(hirda->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE));
/*------- IRDA-associated USART registers setting : BRR Configuration ------*/
if(hirda->Instance == USART1)
{
hirda->Instance->BRR = IRDA_BRR(HAL_RCC_GetPCLK2Freq(), hirda->Init.BaudRate);
}
else
{
hirda->Instance->BRR = IRDA_BRR(HAL_RCC_GetPCLK1Freq(), hirda->Init.BaudRate);
}
}
示例3: spi_get_clock_freq
/*
* Only the frequency is managed in the family specific part
* the rest of SPI management is common to all STM32 families
*/
int spi_get_clock_freq(spi_t *obj) {
struct spi_s *spiobj = SPI_S(obj);
int spi_hz = 0;
/* Get source clock depending on SPI instance */
switch ((int)spiobj->spi) {
case SPI_1:
#if defined SPI4_BASE
case SPI_4:
#endif
#if defined SPI5_BASE
case SPI_5:
#endif
#if defined SPI6_BASE
case SPI_6:
#endif
/* SPI_1, SPI_4, SPI_5 and SPI_6. Source CLK is PCKL2 */
spi_hz = HAL_RCC_GetPCLK2Freq();
break;
case SPI_2:
#if defined SPI3_BASE
case SPI_3:
#endif
/* SPI_2 and SPI_3. Source CLK is PCKL1 */
spi_hz = HAL_RCC_GetPCLK1Freq();
break;
default:
error("CLK: SPI instance not set");
break;
}
return spi_hz;
}
示例4: HAL_TIM_IC_CaptureCallback
/**
* @brief Conversion complete callback in non blocking mode
* @param htim: TIM handle
* @retval None
*/
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
{
if(uhCaptureIndex == 0)
{
/* Get the 1st Input Capture value */
uwIC2Value1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
uhCaptureIndex = 1;
}
else if(uhCaptureIndex == 1)
{
/* Get the 2nd Input Capture value */
uwIC2Value2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
/* Capture computation */
if (uwIC2Value2 > uwIC2Value1)
{
uwDiffCapture = (uwIC2Value2 - uwIC2Value1);
}
else /* (uwIC2Value2 <= uwIC2Value1) */
{
uwDiffCapture = ((0xFFFF - uwIC2Value1) + uwIC2Value2);
}
/* Frequency computation: for this example TIMx (TIM1) is clocked by
2xAPB2Clk */
uwFrequency = (2*HAL_RCC_GetPCLK2Freq()) / uwDiffCapture;
uhCaptureIndex = 0;
}
}
}
示例5: uart_get_baudrate
uint32_t uart_get_baudrate(pyb_uart_obj_t *self) {
uint32_t uart_clk = 0;
#if defined(STM32F0)
uart_clk = HAL_RCC_GetPCLK1Freq();
#elif defined(STM32F7)
switch ((RCC->DCKCFGR2 >> ((self->uart_id - 1) * 2)) & 3) {
case 0:
if (self->uart_id == 1 || self->uart_id == 6) {
uart_clk = HAL_RCC_GetPCLK2Freq();
} else {
uart_clk = HAL_RCC_GetPCLK1Freq();
}
break;
case 1:
uart_clk = HAL_RCC_GetSysClockFreq();
break;
case 2:
uart_clk = HSI_VALUE;
break;
case 3:
uart_clk = LSE_VALUE;
break;
}
#elif defined(STM32H7)
uint32_t csel;
if (self->uart_id == 1 || self->uart_id == 6) {
csel = RCC->D2CCIP2R >> 3;
} else {
示例6: spi_frequency
void spi_frequency(spi_t *obj, int hz)
{
int spi_hz = 0;
uint8_t prescaler_rank = 0;
/* Get source clock depending on SPI instance */
switch ((int)obj->spi) {
case SPI_1:
/* SPI_1. Source CLK is PCKL2 */
spi_hz = HAL_RCC_GetPCLK2Freq();
break;
case SPI_2:
/* SPI_2. Source CLK is PCKL1 */
spi_hz = HAL_RCC_GetPCLK1Freq();
break;
default:
error("SPI instance not set");
}
/* Define pre-scaler in order to get highest available frequency below requested frequency */
while ((spi_hz > hz) && (prescaler_rank < sizeof(baudrate_prescaler_table)/sizeof(baudrate_prescaler_table[0]))){
spi_hz = spi_hz / 2;
prescaler_rank++;
}
if (prescaler_rank <= sizeof(baudrate_prescaler_table)/sizeof(baudrate_prescaler_table[0])) {
obj->br_presc = baudrate_prescaler_table[prescaler_rank-1];
} else {
error("Couldn't setup requested SPI frequency");
}
init_spi(obj);
}
示例7: initTimers
void initTimers()
{
TIM_HandleTypeDef TIM_Handle;
// 10 kHz timer.
#if defined STM32F1
__TIM8_CLK_ENABLE();
TIM_Handle.Instance = TIM8;
TIM_Handle.Init.Prescaler = (uint16_t)(HAL_RCC_GetPCLK2Freq() / 10000) - 1;
#elif defined STM32F2
__TIM4_CLK_ENABLE();
TIM_Handle.Instance = TIM4;
TIM_Handle.Init.Prescaler = (uint16_t)(HAL_RCC_GetPCLK2Freq() / 100000) - 1;
#elif defined STM32F4
__TIM3_CLK_ENABLE();
TIM_Handle.Instance = TIM3;
// TIM3 Clocked from SYSCLK = 168 MHz
TIM_Handle.Init.Prescaler = (uint16_t)(HAL_RCC_GetSysClockFreq() / 10000) - 1;
#endif
// 1 Hz blinking
TIM_Handle.Init.Period = 10000;
TIM_Handle.Init.ClockDivision = 0;
TIM_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
HAL_TIM_Base_Init(&TIM_Handle);
HAL_TIM_PWM_Init(&TIM_Handle);
TIM_OC_InitTypeDef TIM_OCConfig;
TIM_OCConfig.OCMode = TIM_OCMODE_PWM1;
// 5000 / 10000 = 50% duty cycle.
TIM_OCConfig.Pulse = 4999;
TIM_OCConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
TIM_OCConfig.OCFastMode = TIM_OCFAST_DISABLE;
#if defined STM32F1
HAL_TIM_PWM_ConfigChannel(&TIM_Handle, &TIM_OCConfig, TIM_CHANNEL_3);
HAL_TIM_PWM_Start(&TIM_Handle, TIM_CHANNEL_3);
#elif defined STM32F2
HAL_TIM_PWM_ConfigChannel(&TIM_Handle, &TIM_OCConfig, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&TIM_Handle, TIM_CHANNEL_1);
#elif defined STM32F4
HAL_TIM_PWM_ConfigChannel(&TIM_Handle, &TIM_OCConfig, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&TIM_Handle, TIM_CHANNEL_1);
#endif
}
示例8: pyb_freq
/// \function freq()
/// Return a tuple of clock frequencies: (SYSCLK, HCLK, PCLK1, PCLK2).
// TODO should also be able to set frequency via this function
STATIC mp_obj_t pyb_freq(void) {
mp_obj_t tuple[4] = {
mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
};
return mp_obj_new_tuple(4, tuple);
}
示例9: IRDA_SetConfig
/**
* @brief Configure the IRDA peripheral
* @param hirda: irda handle
* @retval None
*/
static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda)
{
uint32_t tmpreg = 0x00000000;
IRDA_ClockSourceTypeDef clocksource = IRDA_CLOCKSOURCE_UNDEFINED;
HAL_StatusTypeDef ret = HAL_OK;
/* Check the communication parameters */
assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate));
assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength));
assert_param(IS_IRDA_PARITY(hirda->Init.Parity));
assert_param(IS_IRDA_TX_RX_MODE(hirda->Init.Mode));
assert_param(IS_IRDA_PRESCALER(hirda->Init.Prescaler));
assert_param(IS_IRDA_POWERMODE(hirda->Init.PowerMode));
/*-------------------------- USART CR1 Configuration -----------------------*/
/* Configure the IRDA Word Length, Parity and transfer Mode:
Set the M bits according to hirda->Init.WordLength value
Set PCE and PS bits according to hirda->Init.Parity value
Set TE and RE bits according to hirda->Init.Mode value */
tmpreg = (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode ;
MODIFY_REG(hirda->Instance->CR1, IRDA_CR1_FIELDS, tmpreg);
/*-------------------------- USART CR3 Configuration -----------------------*/
MODIFY_REG(hirda->Instance->CR3, USART_CR3_IRLP, hirda->Init.PowerMode);
/*-------------------------- USART GTPR Configuration ----------------------*/
MODIFY_REG(hirda->Instance->GTPR, USART_GTPR_PSC, hirda->Init.Prescaler);
/*-------------------------- USART BRR Configuration -----------------------*/
__HAL_IRDA_GETCLOCKSOURCE(hirda, clocksource);
switch (clocksource)
{
case IRDA_CLOCKSOURCE_PCLK1:
hirda->Instance->BRR = (uint16_t)(HAL_RCC_GetPCLK1Freq() / hirda->Init.BaudRate);
break;
case IRDA_CLOCKSOURCE_PCLK2:
hirda->Instance->BRR = (uint16_t)(HAL_RCC_GetPCLK2Freq() / hirda->Init.BaudRate);
break;
case IRDA_CLOCKSOURCE_HSI:
hirda->Instance->BRR = (uint16_t)(HSI_VALUE / hirda->Init.BaudRate);
break;
case IRDA_CLOCKSOURCE_SYSCLK:
hirda->Instance->BRR = (uint16_t)(HAL_RCC_GetSysClockFreq() / hirda->Init.BaudRate);
break;
case IRDA_CLOCKSOURCE_LSE:
hirda->Instance->BRR = (uint16_t)(LSE_VALUE / hirda->Init.BaudRate);
break;
case IRDA_CLOCKSOURCE_UNDEFINED:
default:
ret = HAL_ERROR;
break;
}
return ret;
}
示例10: py_cpufreq_get_current_frequencies
mp_obj_t py_cpufreq_get_current_frequencies()
{
mp_obj_t tuple[4] = {
mp_obj_new_int(cpufreq_get_cpuclk() / (1000000)),
mp_obj_new_int(HAL_RCC_GetHCLKFreq() / (1000000)),
mp_obj_new_int(HAL_RCC_GetPCLK1Freq() / (1000000)),
mp_obj_new_int(HAL_RCC_GetPCLK2Freq() / (1000000)),
};
return mp_obj_new_tuple(4, tuple);
}
示例11: SMARTCARD_SetConfig
/**
* @brief Configures the SMARTCARD peripheral.
* @param hsc: Pointer to a SMARTCARD_HandleTypeDef structure that contains
* the configuration information for the specified SMARTCARD module.
* @retval None
*/
static void SMARTCARD_SetConfig(SMARTCARD_HandleTypeDef *hsc)
{
/* Check the parameters */
assert_param(IS_SMARTCARD_INSTANCE(hsc->Instance));
assert_param(IS_SMARTCARD_POLARITY(hsc->Init.CLKPolarity));
assert_param(IS_SMARTCARD_PHASE(hsc->Init.CLKPhase));
assert_param(IS_SMARTCARD_LASTBIT(hsc->Init.CLKLastBit));
assert_param(IS_SMARTCARD_BAUDRATE(hsc->Init.BaudRate));
assert_param(IS_SMARTCARD_WORD_LENGTH(hsc->Init.WordLength));
assert_param(IS_SMARTCARD_STOPBITS(hsc->Init.StopBits));
assert_param(IS_SMARTCARD_PARITY(hsc->Init.Parity));
assert_param(IS_SMARTCARD_MODE(hsc->Init.Mode));
assert_param(IS_SMARTCARD_NACK_STATE(hsc->Init.NACKState));
/* The LBCL, CPOL and CPHA bits have to be selected when both the transmitter and the
receiver are disabled (TE=RE=0) to ensure that the clock pulses function correctly. */
CLEAR_BIT(hsc->Instance->CR1, (uint32_t)(USART_CR1_TE | USART_CR1_RE));
/*-------------------------- SMARTCARD CR2 Configuration ------------------------*/
/* Clear CLKEN, CPOL, CPHA and LBCL bits */
/* Configure the SMARTCARD Clock, CPOL, CPHA and LastBit -----------------------*/
/* Set CPOL bit according to hsc->Init.CLKPolarity value */
/* Set CPHA bit according to hsc->Init.CLKPhase value */
/* Set LBCL bit according to hsc->Init.CLKLastBit value */
MODIFY_REG(hsc->Instance->CR2,
((uint32_t)(USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_CLKEN | USART_CR2_LBCL)),
((uint32_t)(USART_CR2_CLKEN | hsc->Init.CLKPolarity | hsc->Init.CLKPhase| hsc->Init.CLKLastBit)) );
/* Set Stop Bits: Set STOP[13:12] bits according to hsc->Init.StopBits value */
MODIFY_REG(hsc->Instance->CR2, USART_CR2_STOP,(uint32_t)(hsc->Init.StopBits));
/*-------------------------- SMARTCARD CR1 Configuration -----------------------*/
/* Clear M, PCE, PS, TE and RE bits */
/* Configure the SMARTCARD Word Length, Parity and mode:
Set the M bits according to hsc->Init.WordLength value
Set PCE and PS bits according to hsc->Init.Parity value
Set TE and RE bits according to hsc->Init.Mode value */
MODIFY_REG(hsc->Instance->CR1,
((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE)),
((uint32_t)(hsc->Init.WordLength | hsc->Init.Parity | hsc->Init.Mode)) );
/*-------------------------- USART CR3 Configuration -----------------------*/
/* Clear CTSE and RTSE bits */
CLEAR_BIT(hsc->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE));
/*-------------------------- USART BRR Configuration -----------------------*/
if(hsc->Instance == USART1)
{
hsc->Instance->BRR = SMARTCARD_BRR(HAL_RCC_GetPCLK2Freq(), hsc->Init.BaudRate);
}
else
{
hsc->Instance->BRR = SMARTCARD_BRR(HAL_RCC_GetPCLK1Freq(), hsc->Init.BaudRate);
}
}
示例12: spi_getClkFreqInst
/**
* @brief return clock freq of an SPI instance
* @param spi_inst : SPI instance
* @retval clock freq of the instance else SystemCoreClock
*/
uint32_t spi_getClkFreqInst(SPI_TypeDef * spi_inst)
{
uint32_t spi_freq = SystemCoreClock;
#ifdef STM32F0xx
UNUSED(spi_inst);
/* SPIx source CLK is PCKL1 */
spi_freq = HAL_RCC_GetPCLK1Freq();
#else
if(spi_inst != NP) {
/* Get source clock depending on SPI instance */
switch ((uint32_t)spi_inst) {
#if defined(SPI1_BASE) || defined(SPI4_BASE) || defined(SPI5_BASE) || defined(SPI16_BASE)
/* Some STM32's (eg. STM32F302x8) have no SPI1, but do have SPI2/3. */
#if defined SPI1_BASE
case (uint32_t)SPI1:
#endif
#if defined SPI4_BASE
case (uint32_t)SPI4:
#endif
#if defined SPI5_BASE
case (uint32_t)SPI5:
#endif
#if defined SPI6_BASE
case (uint32_t)SPI6:
#endif
/* SPI1, SPI4, SPI5 and SPI6. Source CLK is PCKL2 */
spi_freq = HAL_RCC_GetPCLK2Freq();
break;
#endif /* SPI[1456]_BASE */
#if defined(SPI2_BASE) || defined (SPI3_BASE)
#if defined SPI2_BASE
case (uint32_t)SPI2:
#endif
#if defined SPI3_BASE
case (uint32_t)SPI3:
#endif
/* SPI_2 and SPI_3. Source CLK is PCKL1 */
spi_freq = HAL_RCC_GetPCLK1Freq();
break;
#endif
default:
printf("CLK: SPI instance not set");
break;
}
}
#endif
return spi_freq;
}
示例13: timer_init
int timer_init(hacs_timer_t tim, hacs_timer_mode_t mode)
{
uint32_t clock_freq;
uint32_t presc;
TIM_HandleTypeDef *htim = &tim_handles[tim];
TIM_TypeDef *inst = hacs_tim_instances[tim];
tim_overflow_cb[tim] = NULL;
// First, find the appropriate prescaler to achieve microsecond resolution
if (inst == TIM1 || inst == TIM10 || inst == TIM11) {
// For stm32f411, these 3 timers are on the APB2 bus
clock_freq = HAL_RCC_GetPCLK2Freq();
} else {
clock_freq = HAL_RCC_GetPCLK1Freq();
}
presc = clock_freq / TIMER_RESOLUTION_FREQ;
// Setup timer base
htim->Instance = inst;
htim->Init.Prescaler = presc;
htim->Init.CounterMode = TIM_COUNTERMODE_UP;
htim->Init.Period = 0;
htim->Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim->Init.RepetitionCounter = 0;
HAL_TIM_Base_Init(htim);
if (mode == HACS_TIMER_MODE_PWM) {
TIM_OC_InitTypeDef sConfigOC;
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
// NOTE: Assume there are 4 PWM channels on each timer, and that all of them are used.
HAL_TIM_PWM_ConfigChannel(htim, &sConfigOC, TIM_CHANNEL_1);
HAL_TIM_PWM_ConfigChannel(htim, &sConfigOC, TIM_CHANNEL_2);
HAL_TIM_PWM_ConfigChannel(htim, &sConfigOC, TIM_CHANNEL_3);
HAL_TIM_PWM_ConfigChannel(htim, &sConfigOC, TIM_CHANNEL_4);
}
return HACS_NO_ERROR;
}
示例14: HAL_InitTick
/**
* @brief This function configures the TIM1 as a time base source.
* The time source is configured to have 1ms time base with a dedicated
* Tick interrupt priority.
* @note This function is called automatically at the beginning of program after
* reset by HAL_Init() or at any time when clock is configured, by HAL_RCC_ClockConfig().
* @param TickPriority: Tick interrupt priorty.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
RCC_ClkInitTypeDef clkconfig;
uint32_t uwTimclock = 0;
uint32_t uwPrescalerValue = 0;
uint32_t pFLatency;
/*Configure the TIM1 IRQ priority */
HAL_NVIC_SetPriority(TIM1_UP_TIM16_IRQn, TickPriority ,0);
/* Enable the TIM1 global Interrupt */
HAL_NVIC_EnableIRQ(TIM1_UP_TIM16_IRQn);
/* Enable TIM1 clock */
__HAL_RCC_TIM1_CLK_ENABLE();
/* Get clock configuration */
HAL_RCC_GetClockConfig(&clkconfig, &pFLatency);
/* Compute TIM1 clock */
uwTimclock = HAL_RCC_GetPCLK2Freq();
/* Compute the prescaler value to have TIM1 counter clock equal to 1MHz */
uwPrescalerValue = (uint32_t) ((uwTimclock / 1000000) - 1);
/* Initialize TIM1 */
htim1.Instance = TIM1;
/* Initialize TIMx peripheral as follow:
+ Period = [(TIM1CLK/1000) - 1]. to have a (1/1000) s time base.
+ Prescaler = (uwTimclock/1000000 - 1) to have a 1MHz counter clock.
+ ClockDivision = 0
+ Counter direction = Up
*/
htim1.Init.Period = (1000000 / 1000) - 1;
htim1.Init.Prescaler = uwPrescalerValue;
htim1.Init.ClockDivision = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
if(HAL_TIM_Base_Init(&htim1) == HAL_OK)
{
/* Start the TIM time Base generation in interrupt mode */
return HAL_TIM_Base_Start_IT(&htim1);
}
/* Return function status */
return HAL_ERROR;
}
示例15: IRDA_SetConfig
/**
* @brief Configures the IRDA peripheral.
* @param hirda: pointer to a IRDA_HandleTypeDef structure that contains
* the configuration information for the specified IRDA module.
* @retval None
*/
static void IRDA_SetConfig(IRDA_HandleTypeDef *hirda)
{
uint32_t tmpreg = 0x00;
/* Check the parameters */
assert_param(IS_IRDA_INSTANCE(hirda->Instance));
assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate));
assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength));
assert_param(IS_IRDA_PARITY(hirda->Init.Parity));
assert_param(IS_IRDA_MODE(hirda->Init.Mode));
/*-------------------------- IRDA CR2 Configuration ------------------------*/
/* Clear STOP[13:12] bits */
hirda->Instance->CR2 &= (uint32_t)~((uint32_t)USART_CR2_STOP);
/*-------------------------- USART CR1 Configuration -----------------------*/
tmpreg = hirda->Instance->CR1;
/* Clear M, PCE, PS, TE and RE bits */
tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | \
USART_CR1_RE));
/* Configure the USART Word Length, Parity and mode:
Set the M bits according to hirda->Init.WordLength value
Set PCE and PS bits according to hirda->Init.Parity value
Set TE and RE bits according to hirda->Init.Mode value */
tmpreg |= (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode;
/* Write to USART CR1 */
hirda->Instance->CR1 = (uint32_t)tmpreg;
/*-------------------------- USART CR3 Configuration -----------------------*/
/* Clear CTSE and RTSE bits */
hirda->Instance->CR3 &= (uint32_t)~((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE));
/*-------------------------- USART BRR Configuration -----------------------*/
if((hirda->Instance == USART1) || (hirda->Instance == USART6))
{
hirda->Instance->BRR = __IRDA_BRR(HAL_RCC_GetPCLK2Freq(), hirda->Init.BaudRate);
}
else
{
hirda->Instance->BRR = __IRDA_BRR(HAL_RCC_GetPCLK1Freq(), hirda->Init.BaudRate);
}
}