本文整理汇总了C++中HAL_ADC_Start函数的典型用法代码示例。如果您正苦于以下问题:C++ HAL_ADC_Start函数的具体用法?C++ HAL_ADC_Start怎么用?C++ HAL_ADC_Start使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了HAL_ADC_Start函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration----------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* Configure the system clock */
SystemClock_Config();
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_ADC_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
char ch;
ch = 'x';
HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 100);
sprintf(strbuf,"Hello\n");
uint32_t adcvals[5];
HAL_ADC_Start(&hadc);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
HAL_ADC_Start(&hadc);
for (int i=0;i<3;i++){
while(HAL_IS_BIT_CLR(hadc.Instance->ISR, (ADC_FLAG_EOC|ADC_FLAG_EOS))){}
adcvals[i] = hadc.Instance->DR;
}
for (int i=0;i<5;i++){
sprintf(strbuf,"i:%d,adc:%4d ",i,adcvals[i]);
HAL_UART_Transmit(&huart1,strbuf,strlen(strbuf),1000);
}
sprintf(strbuf,"\n");
HAL_UART_Transmit(&huart1,strbuf,strlen(strbuf),1000);
HAL_Delay(1000);
}
/* USER CODE END 3 */
}
示例2: main
/**
* @brief Main program.
* @param None
* @retval None
*/
int main(void)
{
/* STM32F4xx HAL library initialization:
- Configure the Flash prefetch, instruction and Data caches
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization: global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure the system clock to 144 MHz */
SystemClock_Config();
/* Configure LED1 and LED3 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED3);
/*##-1- Configure ADC1, ADC2 and ADC3 peripherals ################################*/
ADC_Config();
/*##-2- Enable ADC3 ########################################################*/
if(HAL_ADC_Start(&AdcHandle3) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
/*##-3- Enable ADC2 ########################################################*/
if (HAL_ADC_Start(&AdcHandle2) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
/*##-4- Start ADC1 and ADC2 multimode conversion process and enable DMA ####*/
/* Note: Considering IT occurring after each number of ADC conversions */
/* (IT by DMA end of transfer), select sampling time and ADC clock */
/* with sufficient duration to not create an overhead situation in */
/* IRQHandler. */
if (HAL_ADCEx_MultiModeStart_DMA(&AdcHandle1, (uint32_t *)aADCTripleConvertedValue, 3) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
/* Infinite loop */
while (1)
{
}
}
示例3: main
/**
* @brief Main program.
* @param None
* @retval None
*/
int main(void)
{
/* Enable the CPU Cache */
CPU_CACHE_Enable();
/* STM32F7xx HAL library initialization:
- Configure the Flash ART accelerator on ITCM interface
- Systick timer is configured by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
- Set NVIC Group Priority to 4
- Low Level Initialization
*/
HAL_Init();
/* Configure the system clock to 216 MHz */
SystemClock_Config();
/* Configure LED1 and LED3 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED3);
/*##-1- Configure ADC1, ADC2 and ADC3 peripherals ################################*/
ADC_Config();
/*##-2- Enable ADC3 ########################################################*/
if(HAL_ADC_Start(&AdcHandle3) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
/*##-3- Enable ADC2 ########################################################*/
if (HAL_ADC_Start(&AdcHandle2) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
/*##-4- Start ADC1 and ADC2 multimode conversion process and enable DMA ####*/
if (HAL_ADCEx_MultiModeStart_DMA(&AdcHandle1, (uint32_t *)aADCTripleConvertedValue, 3) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
/* Infinite loop */
while (1)
{
}
}
示例4: adc_read
uint32_t adc_read(uint32_t u32_adc_chan)
{
ADC_ChannelConfTypeDef sConfigADC;
uint32_t u32_adc_result = 0;
uint8_t j = 0;
uint8_t u8_num_conv = 10;
/* Configure channel */
sConfigADC.Rank = ADC_RANK_CHANNEL_NUMBER;
sConfigADC.Channel = u32_adc_chan;
hstat = HAL_ADC_ConfigChannel(&hadc, &sConfigADC);
/* Perform conversion */
hstat = HAL_ADC_Start(&hadc);
while(j<u8_num_conv)
{
hstat = HAL_ADC_PollForConversion(&hadc, 10);
u32_adc_result = u32_adc_result + HAL_ADC_GetValue(&hadc);
j++;
}
u32_adc_result = u32_adc_result / u8_num_conv;
hstat = HAL_ADC_Stop(&hadc);
/* Disable channel */
sConfigADC.Rank = ADC_RANK_NONE;
hstat = HAL_ADC_ConfigChannel(&hadc, &sConfigADC);
return u32_adc_result;
}
示例5: ADC_Get_Pulse
uint16_t ADC_Get_Pulse(void)
{
uint16_t adc_value;
uint16_t adc_valuetest=0;
ADC_Config_CH2();
if (HAL_ADCEx_Calibration_Start(&AdcHandle) != HAL_OK)
{
/* Calibration Error */
Error_Handler();
}
#if defined(ADC_TRIGGER_FROM_TIMER)
/* Configure the TIM peripheral */
TIM_Config();
#endif /* ADC_TRIGGER_FROM_TIMER */
/*## Enable peripherals ####################################################*/
#if defined(ADC_TRIGGER_FROM_TIMER)
/* Timer enable */
if (HAL_TIM_Base_Start(&TimHandle) != HAL_OK)
{
/* Counter Enable Error */
Error_Handler();
}
#endif /* ADC_TRIGGER_FROM_TIMER */
/* Note: This example, on some other STM32 boards, is performing */
/* DAC signal generation here. */
/* On STM32F103RB-Nucleo, the device has no DAC available, */
/* therefore analog signal must be supplied externally. */
/*## Start ADC conversions #################################################*/
/* Start ADC conversion on regular group with transfer by DMA */
// if (HAL_ADC_Start_DMA(&AdcHandle,
// (uint32_t *)aADCxConvertedValues,
// ADCCONVERTEDVALUES_BUFFER_SIZE
// ) != HAL_OK)
// {
// /* Start Error */
// Error_Handler();
// }
if (HAL_ADC_Start(&AdcHandle) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
if (HAL_ADC_PollForConversion(&AdcHandle,10) != HAL_OK)
{
/* Start Error */
Error_Handler();
}
adc_value= HAL_ADC_GetValue(&AdcHandle);
return(adc_value);
}
示例6: test2
void test2(){
//premier temps: Single mode //977us
myanalogin_init(&adc,A1);
wait_ms(10);
HAL_ADC_Start(&myAdcHandle); // pour le continuous mode uniquement
uint32_t tempo2[480]; // pour le continuous mode uniquement
float tempo[480]; // 480 nb echantillons pendant 200us en theorie
temp.start();
for (int i = 0; i < 480; i++){
//tempo[i]=myanalogin_read(&adc); // single mode
//tempo2[i]=HAL_ADC_GetValue(&myAdcHandle); // continuous mode // 104us -> la conversion ne se fait probablement pas entierement -> changer le sampletime
//HAL_ADC_Start(&myAdcHandle);
tempo2[i]=HAL_ADC_GetValue(&myAdcHandle); // single mode V2 // 456us-> dememe on ne garanti que la conversion est faire entierement
//while(!(__HAL_ADC_GET_FLAG(&myAdcHandle, ADC_FLAG_EOC)));
HAL_ADC_PollForConversion(&myAdcHandle, 5);
//wait_us(1);
}
temp.stop();
printf("*********************");
for (int i = 0; i < 480; i++){
printf("%f \n",((float)tempo2[i] * (1.0f / (float)0xFFF))*3300);
}
printf("duree: %d us \n", temp.read_us());
}
示例7: drv_adc_read
int32_t drv_adc_read(uint32_t ulPin)
{
ADC_ChannelConfTypeDef sConfig;
ADC_HandleTypeDef *hADCx;
uint32_t ulValue = 0;
uint32_t ulChannel;
uint32_t adc_pin;
adc_pin = analogPinToChannel(ulPin);
ulChannel = g_Pin2PortMapArray[adc_pin].adc_channel;
if(ulChannel == NO_ADC)
return -1;
hADCx = g_Pin2PortMapArray[adc_pin].ADCx;
sConfig.Channel = ulChannel;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_41CYCLES_5;
HAL_ADC_ConfigChannel(hADCx, &sConfig);
HAL_ADC_Start(hADCx);
HAL_ADC_PollForConversion(hADCx, 10);
ulValue = HAL_ADC_GetValue(hADCx);
return (int32_t)ulValue;
}
示例8: read_batt
//------------------------------------------------------
uint8_t read_batt()
{ uint32_t temp[3];
//HAL_ADC_Start_IT(&hadc1);
for(uint8_t i=0;i<3;i++)
{
HAL_ADC_Start(&hadc1);
if (HAL_ADC_PollForConversion(&hadc1, 100) != HAL_OK)
return 0;
if ((HAL_ADC_GetState(&hadc1) & HAL_ADC_STATE_EOC_REG) == HAL_ADC_STATE_EOC_REG)
{
temp[i] = HAL_ADC_GetValue(&hadc1);
if(temp[i]<batt_min)
temp[i]=batt_min;
if(temp[i]>batt_max)
temp[i]=batt_max;
}
HAL_ADC_Stop(&hadc1);
}
temp[0]=(temp[0]+temp[1]+temp[2])/3;
batt_status=(temp[0]-batt_min)*100/(batt_max-batt_min);
SEGGER_RTT_printf(0,"power:%d\r\n",batt_status);
return 1;
}
示例9: Thread_Temperature
/**
* @brief Temperature monitoring thread
* @param none
* @retval none
*/
void Thread_Temperature (void const *argument) {
while(1) {
HAL_ADC_Start(&ADC1_Handle); /* start ADC conversion */
if (HAL_ADC_PollForConversion(&ADC1_Handle, 10000) == HAL_OK) { /* wait for the conversion to be done and get data */
adc_val = HAL_ADC_GetValue(&ADC1_Handle); /* get the value */
kalmanUpdate(&adcState, adc_val); /* filter the data and update the filter parameters */
temperature = convertTemp(adcState.x);
__HAL_ADC_CLEAR_FLAG(&ADC1_Handle, ADC_FLAG_EOC);
}
// check if the alarm needs to be triggered
if (temperature > THRESHHOLD_TEMP_URGENT) {
flash_alarm = 2;
} else if (temperature > THRESHHOLD_TEMP) {
flash_alarm = 1;
} else {
flash_alarm = 0;
}
osDelay(TEMP_DELAY);
}
}
示例10: adc_read_channel
STATIC uint32_t adc_read_channel(ADC_HandleTypeDef *adcHandle) {
HAL_ADC_Start(adcHandle);
adc_wait_for_eoc_or_timeout(EOC_TIMEOUT);
uint32_t value = ADCx->DR;
HAL_ADC_Stop(adcHandle);
return value;
}
示例11: adc_read_timed
/// \method read_timed(buf, timer)
///
/// Read analog values into `buf` at a rate set by the `timer` object.
///
/// `buf` can be bytearray or array.array for example. The ADC values have
/// 12-bit resolution and are stored directly into `buf` if its element size is
/// 16 bits or greater. If `buf` has only 8-bit elements (eg a bytearray) then
/// the sample resolution will be reduced to 8 bits.
///
/// `timer` should be a Timer object, and a sample is read each time the timer
/// triggers. The timer must already be initialised and running at the desired
/// sampling frequency.
///
/// To support previous behaviour of this function, `timer` can also be an
/// integer which specifies the frequency (in Hz) to sample at. In this case
/// Timer(6) will be automatically configured to run at the given frequency.
///
/// Example using a Timer object (preferred way):
///
/// adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
/// tim = pyb.Timer(6, freq=10) # create a timer running at 10Hz
/// buf = bytearray(100) # creat a buffer to store the samples
/// adc.read_timed(buf, tim) # sample 100 values, taking 10s
///
/// Example using an integer for the frequency:
///
/// adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19
/// buf = bytearray(100) # create a buffer of 100 bytes
/// adc.read_timed(buf, 10) # read analog values into buf at 10Hz
/// # this will take 10 seconds to finish
/// for val in buf: # loop over all values
/// print(val) # print the value out
///
/// This function does not allocate any memory.
STATIC mp_obj_t adc_read_timed(mp_obj_t self_in, mp_obj_t buf_in, mp_obj_t freq_in) {
pyb_obj_adc_t *self = self_in;
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_WRITE);
size_t typesize = mp_binary_get_size('@', bufinfo.typecode, NULL);
TIM_HandleTypeDef *tim;
#if defined(TIM6)
if (mp_obj_is_integer(freq_in)) {
// freq in Hz given so init TIM6 (legacy behaviour)
tim = timer_tim6_init(mp_obj_get_int(freq_in));
HAL_TIM_Base_Start(tim);
} else
#endif
{
// use the supplied timer object as the sampling time base
tim = pyb_timer_get_handle(freq_in);
}
// configure the ADC channel
adc_config_channel(&self->handle, self->channel);
// This uses the timer in polling mode to do the sampling
// TODO use DMA
uint nelems = bufinfo.len / typesize;
for (uint index = 0; index < nelems; index++) {
// Wait for the timer to trigger so we sample at the correct frequency
while (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) == RESET) {
}
__HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE);
if (index == 0) {
// for the first sample we need to turn the ADC on
HAL_ADC_Start(&self->handle);
} else {
// for subsequent samples we can just set the "start sample" bit
#if defined(STM32F4) || defined(STM32F7)
ADCx->CR2 |= (uint32_t)ADC_CR2_SWSTART;
#elif defined(STM32L4)
SET_BIT(ADCx->CR, ADC_CR_ADSTART);
#else
#error Unsupported processor
#endif
}
// wait for sample to complete
#define READ_TIMED_TIMEOUT (10) // in ms
adc_wait_for_eoc_or_timeout(READ_TIMED_TIMEOUT);
// read value
uint value = ADCx->DR;
// store value in buffer
if (typesize == 1) {
value >>= 4;
}
mp_binary_set_val_array_from_int(bufinfo.typecode, bufinfo.buf, index, value);
}
示例12: Thread_check_temp
/*----------------------------------------------------------------------------
* Implementation of the temperature checking thread
*---------------------------------------------------------------------------*/
void Thread_check_temp (void const *argument) {
float temperature = 0.0f;
while(1){
//Using a delay of 10ms so that the frequency of temperature sampling is 100Hz
osDelay(10);
//Start the ADC
if (HAL_ADC_Start(&ADC1_Handle) != HAL_OK) {
Error_Handler(ADC_START_FAIL);
}
else {
//Check for successful conversion of the polled analog value to a digital reading
if(HAL_ADC_PollForConversion(&ADC1_Handle, 1000000) != HAL_OK) {
Error_Handler(ADC_POLL_FAIL);
}
else {
//Measure temperature from sensor
temperature = get_data_from_sensor();
}
//Clear the EOC flag
__HAL_ADC_CLEAR_FLAG(&ADC1_Handle,ADC_FLAG_EOC);
}
//Pass the temp value to the temperature checking function
display_temp = temperature;
check_temperature_status(display_temp);
}
}
示例13: temperature
uint16_t temperature(){
float temp,Vdd_voltage,temp30,sense,x=0.8058608;
int32_t fuck,vrefint_data; //VREFINT measured value
int16_t vrefint_cal_temp,vrefint_cal_int; //VREFINT calibration value
ADC_ChannelConfTypeDef sConfig;
vrefint_cal_temp= *((int32_t*)0x1FFFF7B8);
vrefint_cal_int= *((int32_t*)0x1FFFF7BA);
ADC->CCR |= ADC_CCR_TSEN;
HAL_Delay(50);
//MX_ADC_Init();
//HAL_ADC_Init(&hadc);
HAL_ADCEx_Calibration_Start(&hadc);
sConfig.Channel = ADC_CHANNEL_VREFINT;
sConfig.Rank = ADC_RANK_CHANNEL_NUMBER;
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5 ;
hadc.Instance->CHSELR = (uint32_t)(ADC_CHSELR_CHSEL17);
HAL_ADC_ConfigChannel(&hadc,&sConfig);
HAL_ADC_Start(&hadc);
HAL_ADC_PollForConversion(&hadc,1000);
vrefint_data = (int32_t)HAL_ADC_GetValue(&hadc); //vint beolvasott digitális érték
HAL_ADC_Stop(&hadc);
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
hadc.Instance->CHSELR = (uint32_t)(ADC_CHSELR_CHSEL16);
HAL_ADC_ConfigChannel(&hadc,&sConfig);
HAL_ADC_Start(&hadc);
HAL_ADC_PollForConversion(&hadc,1000);
fuck = (int32_t)HAL_ADC_GetValue(&hadc); //temerature sensor
HAL_ADC_Stop(&hadc);
sense=(float)((float)vrefint_cal_int*(float)fuck);
sense=(float)(sense/(float)vrefint_data);
sense=(float)(sense*x);
temp30=(3300*vrefint_cal_temp)/4095;
temp=temp30-sense+30;
PutString("Temperature:");
PutNumber((uint32_t)temp);
PutString("\n");
// HAL_ADC_DeInit(&hadc);
return (uint16_t)temp;
}
示例14: voltage_read
uint16_t voltage_read(uint32_t channel, float voltage_div ){
//TIM_CHANNEL_2 -> Battery voltage, div=2.0
//ADC_voltage = (Vcal*vrefint_cal* ADC_data) / (vrefint_data*FULL_SCALE)
float voltage,x=0.80586; //x=3300/4095
uint32_t aResult; //a mért csdatorna értéke
uint16_t vrefint_cal; //VREFINT calibration value,gyári kalibrációs érték(3,3V on) vrefint
uint32_t vrefint_data; //VREFINT measured value, tényleges vrefint
ADC->CCR |= ADC_CCR_VREFEN;
vrefint_cal= *((uint16_t*)VREFINT_CAL_ADDR);
ADC_ChannelConfTypeDef sConfig;
//MX_ADC_Init();
//HAL_ADC_Init(&hadc);
sConfig.Channel = ADC_CHANNEL_VREFINT;
sConfig.Rank = ADC_RANK_CHANNEL_NUMBER;
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
hadc.Instance->CHSELR = (uint32_t)(ADC_CHSELR_CHSEL17);
HAL_ADC_ConfigChannel(&hadc,&sConfig);
HAL_ADCEx_Calibration_Start(&hadc);
HAL_ADC_Start(&hadc);
HAL_ADC_PollForConversion(&hadc,1000);
vrefint_data = HAL_ADC_GetValue(&hadc); //vrefint beolvasott digitális érték
HAL_ADC_Stop(&hadc);
hadc.Instance->CHSELR = (uint32_t)(ADC_CHSELR_CHSEL2);
sConfig.Channel = channel;
HAL_ADC_ConfigChannel(&hadc,&sConfig);
HAL_ADC_Start(&hadc);
HAL_ADC_PollForConversion(&hadc,100);
aResult = HAL_ADC_GetValue(&hadc); //aksifesz beolvasás
HAL_ADC_Stop(&hadc);
voltage = (((float)vrefint_cal/(float)vrefint_data))* (float)aResult*x; //feszültség kiszámolása mV-ban
voltage *=voltage_div;
PutString("voltage=");
PutNumber((uint32_t)voltage);
PutString("mV\n");
return (uint16_t)voltage;
}
示例15: battery_voltage_read
uint16_t battery_voltage_read(){ //PA2 lábon, chanel_2
float voltage,x=0.80586;
uint32_t aResult;
uint16_t vrefint_cal; //VREFINT calibration value
uint32_t vrefint_data; //VREFINT measured value
ADC->CCR |= ADC_CCR_VREFEN;
vrefint_cal= *((uint16_t*)VREFINT_CAL_ADDR);
ADC_ChannelConfTypeDef sConfig;
//MX_ADC_Init();
//HAL_ADC_Init(&hadc);
sConfig.Channel = ADC_CHANNEL_VREFINT;
sConfig.Rank = ADC_RANK_CHANNEL_NUMBER;
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
hadc.Instance->CHSELR = (uint32_t)(ADC_CHSELR_CHSEL17);
HAL_ADC_ConfigChannel(&hadc,&sConfig);
HAL_ADCEx_Calibration_Start(&hadc);
HAL_ADC_Start(&hadc);
HAL_ADC_PollForConversion(&hadc,1000);
vrefint_data = HAL_ADC_GetValue(&hadc); //vrefint beolvasott digitális érték
HAL_ADC_Stop(&hadc);
hadc.Instance->CHSELR = (uint32_t)(ADC_CHSELR_CHSEL2);
sConfig.Channel = ADC_CHANNEL_2; //aksifesz bemenet
HAL_ADC_ConfigChannel(&hadc,&sConfig);
HAL_ADC_Start(&hadc);
HAL_ADC_PollForConversion(&hadc,100);
aResult = HAL_ADC_GetValue(&hadc); //aksifesz beolvasás
HAL_ADC_Stop(&hadc);
voltage = (((float)vrefint_cal/(float)vrefint_data))* (float)aResult*x; //feszültség kiszámolása mV-ban
voltage *=2;
PutString("battery voltage=");
PutNumber((uint32_t)voltage);
PutString("mV");
PutString("\n");
// HAL_ADC_DeInit(&hadc);
return (uint32_t)voltage;
}