本文整理汇总了C++中Gt函数的典型用法代码示例。如果您正苦于以下问题:C++ Gt函数的具体用法?C++ Gt怎么用?C++ Gt使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了Gt函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: OpenFile
/*!
Computes the first unpolarized moment
\f[
{\cal O}_{14} = \overline{q} \left[ \gamma_1
\stackrel{\displaystyle \leftrightarrow}{D}_4
+\gamma_4
\stackrel{\displaystyle \leftrightarrow}{D}_1
\right] q
\f]
with polarized projector
*/
void AlgNuc3pt::calc_EnergyMomentum(const ThreeMom& mom)
{
OpenFile();
Fprintf(fp,"The next is: Energy momentum k4 + 4k\n");
CloseFile();
for ( int n = 0; n < num_qprop; n++ ) {
for (int i(X);i<4;i++){
DIR d = DIR(i) ;
Gamma Gx(d);
Gamma Gt(T);
Derivative Der_t(T);
Derivative Der_x(d);
Nuc3ptStru Xq_xt(mom,Gx, Der_t);
Xq_xt.Calc3pt(*u_s_prop, *q_prop[n]);
Xq_xt.Calc3pt(*d_s_prop, *q_prop[n]);
Nuc3ptStru Xq_tx(mom,Gt,Der_x);
Xq_tx.Calc3pt(*u_s_prop, *q_prop[n]);
Xq_tx.Calc3pt(*d_s_prop, *q_prop[n]);
Xq_xt += Xq_tx ;
OpenFile();
Xq_xt.Print(fp) ;
CloseFile();
}
}
}
示例2: TestTimeReversibility
void TestTimeReversibility(Integrator const& integrator) {
Length const q_initial = 1 * Metre;
Speed const v_initial = 0 * Metre / Second;
Speed const v_amplitude = 1 * Metre / Second;
Instant const t_initial;
Instant const t_final = t_initial + 100 * Second;
Time const step = 1 * Second;
std::vector<ODE::SystemState> solution;
ODE harmonic_oscillator;
harmonic_oscillator.compute_acceleration =
std::bind(ComputeHarmonicOscillatorAcceleration,
_1, _2, _3, /*evaluations=*/nullptr);
IntegrationProblem<ODE> problem;
problem.equation = harmonic_oscillator;
ODE::SystemState const initial_state = {{q_initial}, {v_initial}, t_initial};
ODE::SystemState final_state;
problem.initial_state = &initial_state;
problem.t_final = t_final;
problem.append_state = [&final_state](ODE::SystemState const& state) {
final_state = state;
};
integrator.Solve(problem, step);
problem.initial_state = &final_state;
problem.t_final = t_initial;
integrator.Solve(problem, -step);
EXPECT_EQ(t_initial, final_state.time.value);
if (integrator.time_reversible) {
EXPECT_THAT(final_state.positions[0].value,
AlmostEquals(q_initial, 0, 8));
EXPECT_THAT(final_state.velocities[0].value,
VanishesBefore(v_amplitude, 0, 16));
} else {
EXPECT_THAT(AbsoluteError(q_initial,
final_state.positions[0].value),
Gt(1e-4 * Metre));
EXPECT_THAT(AbsoluteError(v_initial,
final_state.velocities[0].value),
Gt(1e-4 * Metre / Second));
}
}
示例3: TEST
TEST(MatchingContainers, Foo)
{
MockFoo foo;
EXPECT_CALL(foo, Bar(ElementsAre(1, Gt(0), _, 5)));
EXPECT_CALL(foo, Bar(UnorderedElementsAre(2, 3)));
const vector<int> a{1, 2, 3, 5};
foo.Bar(a);
const vector<int> b{3, 2};
foo.Bar(b);
}
示例4: Gt
/*!
Computes the conserved vector current using the
\f[
{\cal O}_\mu = \overline{q} \gamma_\mu q
\f]
all possible mometa are inserted
*/
void AlgNuc3pt::calc_Cons_Vector(int Nmom, ThreeMom* mom)
{
Gamma Gt(T);
Nuc3ptCons VectCurr(Gt);
const int MaxNmom=50;
if(Nmom>MaxNmom)
ERR.General(cname,"calc_Cons_Vector","Nmom(%d)>MaxNmom(%d)",Nmom,MaxNmom);
Nuc3ptCons *VectCurrp[MaxNmom][4];
for(int ip(0);ip<Nmom;ip++) for (int i(X);i<4;i++){
DIR d = DIR(i) ;
Gamma G(d);
VectCurrp[ip][i] = new Nuc3ptCons(mom[ip],G) ;
}
for ( int n = 0; n < num_qprop; n++ ) {
QPropW* quark = new QPropWGaussSrc(*q_prop[n]);
VectCurr.Calc3pt(*u_s_prop,*quark);
for(int ip(0);ip<Nmom;ip++)
for (int i(X);i<4;i++)
VectCurrp[ip][i]->Calc3pt(*u_s_prop,*quark);
u_s_prop->DeleteQPropLs();
if(Nuc3pt_arg->DoConserved == 1) {
char dummy[30];
d_s_prop->RestoreQPropLs_ftom(dummy);
}
VectCurr.Calc3pt(*d_s_prop,*quark);
for(int ip(0);ip<Nmom;ip++) for (int i(X);i<4;i++)
VectCurrp[ip][i]->Calc3pt(*d_s_prop,*quark);
d_s_prop->DeleteQPropLs();
OpenFile();
VectCurr.Print(fp) ;
for(int ip(0);ip<Nmom;ip++) for (int i(X);i<4;i++)
VectCurrp[ip][i]->Print(fp) ;
CloseFile();
delete quark;
}
for(int ip(0);ip<Nmom;ip++)
for (int i(X);i<4;i++)
delete VectCurrp[ip][i];
}
示例5: TestTermination
void TestTermination(
Integrator const& integrator) {
Length const q_initial = 1 * Metre;
Speed const v_initial = 0 * Metre / Second;
Instant const t_initial;
Instant const t_final = t_initial + 163 * Second;
Time const step = 42 * Second;
int const steps = static_cast<int>(std::floor((t_final - t_initial) / step));
int evaluations = 0;
std::vector<ODE::SystemState> solution;
ODE harmonic_oscillator;
harmonic_oscillator.compute_acceleration =
std::bind(ComputeHarmonicOscillatorAcceleration,
_1, _2, _3, &evaluations);
IntegrationProblem<ODE> problem;
problem.equation = harmonic_oscillator;
ODE::SystemState const initial_state = {{q_initial}, {v_initial}, t_initial};
problem.initial_state = &initial_state;
problem.t_final = t_final;
problem.append_state = [&solution](ODE::SystemState const& state) {
solution.push_back(state);
};
integrator.Solve(problem, step);
EXPECT_EQ(steps, solution.size());
EXPECT_THAT(solution.back().time.value,
AllOf(Gt(t_final - step), Le(t_final)));
switch (integrator.composition) {
case BA:
case ABA:
EXPECT_EQ(steps * integrator.evaluations, evaluations);
break;
case BAB:
EXPECT_EQ(steps * integrator.evaluations + 1, evaluations);
break;
default:
LOG(FATAL) << "Invalid composition";
}
Length q_error;
Speed v_error;
for (int i = 0; i < steps; ++i) {
Time const t = solution[i].time.value - t_initial;
EXPECT_THAT(t, AlmostEquals((i + 1) * step, 0));
}
}
示例6: TestTermination
void TestTermination(Integrator const& integrator) {
Length const q_initial = 1 * Metre;
Speed const v_initial = 0 * Metre / Second;
Instant const t_initial;
Instant const t_final = t_initial + 1630 * Second;
Time const step = 42 * Second;
int const steps = static_cast<int>(std::floor((t_final - t_initial) / step));
int evaluations = 0;
std::vector<ODE::SystemState> solution;
ODE harmonic_oscillator;
harmonic_oscillator.compute_acceleration =
std::bind(ComputeHarmonicOscillatorAcceleration,
_1, _2, _3, &evaluations);
IntegrationProblem<ODE> problem;
problem.equation = harmonic_oscillator;
ODE::SystemState const initial_state = {{q_initial}, {v_initial}, t_initial};
problem.initial_state = &initial_state;
auto append_state = [&solution](ODE::SystemState const& state) {
solution.push_back(state);
};
auto const instance =
integrator.NewInstance(problem, std::move(append_state), step);
integrator.Solve(t_final, *instance);
EXPECT_EQ(steps, solution.size());
EXPECT_THAT(solution.back().time.value,
AllOf(Gt(t_final - step), Le(t_final)));
Length q_error;
Speed v_error;
for (int i = 0; i < steps; ++i) {
Time const t = solution[i].time.value - t_initial;
EXPECT_THAT(t, AlmostEquals((i + 1) * step, 0));
}
}
示例7: cellGreater
bool cellGreater(Cell cell, double val) {
return cellRelOp(Gt(), cell, val);
}
示例8: Nuc_c5
//.........这里部分代码省略.........
Nuc3pt_arg->mt[nt]+=Nuc3pt_arg->t_sink; // locations of the proton sinks
Nuc3pt_arg->mt[nt]=Nuc3pt_arg->mt[nt]%(GJP.Tnodes()*GJP.TnodeSites());
q_prop[n]->GaussSmearSinkProp(Nuc3pt_arg->mt[nt],q_prop[n]->GaussArg());
}
} //end smeared sink
}
//Now do the 3pt functions
// If doing coherent sinks, don't calculate the 3pt functions until all the
// forward propagators have been calculated. --MFL
int do_seq = 0;
// int t_sink;
if(Nuc3pt_arg->calc_seqQ != MULT_SEQ
&& Nuc3pt_arg->calc_seqQ != WRITE_MULT_SEQ
&& Nuc3pt_arg->calc_seqQ != READ_MULT_SEQ) {
do_seq = 1;
t_sink = ts + Nuc3pt_arg->t_sink;
}
// once all the forward propagators have been calculated,
// do the sequential propagaotrs. --MFL
else if (i_source == num_qprop-1) {
do_seq = 1;
t_sink = Nuc3pt_arg->t_source + Nuc3pt_arg->t_sink;
}
if(Nuc3pt_arg->DoUnPolarized && do_seq)
{
// for conserved vector currents
Gamma Gt(T);
Nuc3ptCons VectCurr(Gt);
Nuc3ptCons *VectCurrp[4];
if(Nuc3pt_arg->DoConserved) {
for (int i(X);i<4;i++){
DIR d = DIR(i) ;
Gamma G(d);
VectCurrp[i] = new Nuc3ptCons(Nmom,G) ;
}
}
OpenFile();
Fprintf(fp,"UnPolarized Zero mom.\n");
CloseFile();
//first do the zero momentum un-polarized stuff
//up-quark
GetTheSeqPropagator(t_sink,qmass,
PROT_U_SEQ,ZeroMom,PPAR);
//down-quark
GetTheSeqPropagator(t_sink,qmass,
PROT_D_SEQ,ZeroMom,PPAR);
calc_Scalar(); //needed for the sigma term
calc_Vector(); //Vector current
calc_X_q_b(); //<x>_q (b) does not need non-zero momentum
for(int i(0) ; i<Nmom ; i++) calc_Vector(sink_mom[i]);
//conserved current
if(Nuc3pt_arg->DoConserved) {
if(GJP.Snodes()==2) u_s_prop->SwapQPropLs();
示例9: init
virtual void init(Voxel& voxel)
{
half_odf_size = voxel.ti.half_vertices_count;
unsigned int b_count = voxel.bvalues.size();
icosa_data.resize(half_odf_size*3);
for (unsigned int index = 0; index < half_odf_size; ++index)
std::copy(voxel.ti.vertices[index].begin(),voxel.ti.vertices[index].end(),icosa_data.begin()+index*3);
float interop_angle = voxel.param[0]/180.0*M_PI;
float smoothing_angle = voxel.param[1]/180.0*M_PI;
Ht.resize(half_odf_size*b_count); // n * m
// H=phi(acos(QtV))
for (unsigned int n = 0,index = 0; n < half_odf_size; ++n)
for (unsigned int m = 0; m < b_count; ++m,++index)
{
float value = std::abs(
voxel.bvectors[m]*image::vector<3,float>(voxel.ti.vertices[n]));
Ht[index] = spherical_guassian(value,interop_angle);
}
iHtH.resize(half_odf_size*half_odf_size);
iHtH_pivot.resize(half_odf_size);
image::matrix::square(Ht.begin(),iHtH.begin(),image::dyndim(half_odf_size,b_count));
image::matrix::lu_decomposition(iHtH.begin(),iHtH_pivot.begin(),image::dyndim(half_odf_size,half_odf_size));
// vector of angles
std::vector<float> C(3*k); // 3 by k matrix
for (unsigned int index = 0; index < k; ++index)
{
C[index] = std::cos(2.0*M_PI*((float)index+1)/((float)k));
C[k+index] = std::sin(2.0*M_PI*((float)index+1)/((float)k));
C[k+k+index] = 0.0;
}
// RC
std::vector<float> G(half_odf_size*half_odf_size);
std::vector<float> icosa_data_r(half_odf_size*3);
for (unsigned int gi = 0; gi < half_odf_size; ++gi)
{
image::vector<3,float> u(voxel.ti.vertices[gi]);
float r[9];// a 3-by-3 matrix
rotation_matrix(r,u.begin());
std::vector<float> Gt(half_odf_size*k); // a half_odf_size-by-k matrix
// Gt = icosa_data*r*C;
image::matrix::product(icosa_data.begin(),r,icosa_data_r.begin(),image::dyndim(half_odf_size,3),image::dim<3,3>());
image::matrix::product(icosa_data_r.begin(),C.begin(),Gt.begin(),image::dyndim(half_odf_size,3),image::dyndim(3,k));
for (unsigned int i = 0; i < Gt.size(); ++i)
Gt[i] = spherical_guassian(std::abs(Gt[i]),interop_angle);
unsigned int posgi = gi*half_odf_size;
for (unsigned int i = 0,posi = 0; i < half_odf_size; ++i,posi+=k)
G[posgi+i] = std::accumulate(Gt.begin()+posi,Gt.begin()+posi+k,0.0);
}
// add smoothing to G
std::vector<float> S(half_odf_size*half_odf_size);
for (unsigned int i = 0; i < half_odf_size; ++i)
{
float sum = 0.0;
for (unsigned int j = 0,index = i*half_odf_size; j < half_odf_size; ++j,++index)
sum +=
S[index] = spherical_guassian(std::abs(voxel.ti.vertices_cos(i,j)),smoothing_angle);
for (unsigned int j = 0,index = i*half_odf_size; j < half_odf_size; ++j,++index)
S[index] /= sum;
}
sG.resize(half_odf_size*half_odf_size);
//sG = S*G;
image::matrix::product(S.begin(),G.begin(),sG.begin(),image::dyndim(half_odf_size,half_odf_size),image::dyndim(half_odf_size,half_odf_size));
}
示例10: TestConvergence
void TestConvergence(Integrator const& integrator,
Time const& beginning_of_convergence) {
Length const q_initial = 1 * Metre;
Speed const v_initial = 0 * Metre / Second;
Speed const v_amplitude = 1 * Metre / Second;
AngularFrequency const ω = 1 * Radian / Second;
Instant const t_initial;
Instant const t_final = t_initial + 100 * Second;
Time step = beginning_of_convergence;
int const step_sizes = 50;
double const step_reduction = 1.1;
std::vector<double> log_step_sizes;
log_step_sizes.reserve(step_sizes);
std::vector<double> log_q_errors;
log_step_sizes.reserve(step_sizes);
std::vector<double> log_p_errors;
log_step_sizes.reserve(step_sizes);
std::vector<ODE::SystemState> solution;
ODE harmonic_oscillator;
harmonic_oscillator.compute_acceleration =
std::bind(ComputeHarmonicOscillatorAcceleration,
_1, _2, _3, /*evaluations=*/nullptr);
IntegrationProblem<ODE> problem;
problem.equation = harmonic_oscillator;
ODE::SystemState const initial_state = {{q_initial}, {v_initial}, t_initial};
problem.initial_state = &initial_state;
ODE::SystemState final_state;
auto const append_state = [&final_state](ODE::SystemState const& state) {
final_state = state;
};
for (int i = 0; i < step_sizes; ++i, step /= step_reduction) {
auto const instance = integrator.NewInstance(problem, append_state, step);
integrator.Solve(t_final, *instance);
Time const t = final_state.time.value - t_initial;
Length const& q = final_state.positions[0].value;
Speed const& v = final_state.velocities[0].value;
double const log_q_error = std::log10(
AbsoluteError(q / q_initial, Cos(ω * t)));
double const log_p_error = std::log10(
AbsoluteError(v / v_amplitude, -Sin(ω * t)));
if (log_q_error <= -13 || log_p_error <= -13) {
// If we keep going the effects of finite precision will drown out
// convergence.
break;
}
log_step_sizes.push_back(std::log10(step / Second));
log_q_errors.push_back(log_q_error);
log_p_errors.push_back(log_p_error);
}
double const q_convergence_order = Slope(log_step_sizes, log_q_errors);
double const q_correlation =
PearsonProductMomentCorrelationCoefficient(log_step_sizes, log_q_errors);
LOG(INFO) << "Convergence order in q : " << q_convergence_order;
LOG(INFO) << "Correlation : " << q_correlation;
#if !defined(_DEBUG)
EXPECT_THAT(RelativeError(integrator.order, q_convergence_order),
Lt(0.05));
EXPECT_THAT(q_correlation, AllOf(Gt(0.99), Lt(1.01)));
#endif
double const v_convergence_order = Slope(log_step_sizes, log_p_errors);
double const v_correlation =
PearsonProductMomentCorrelationCoefficient(log_step_sizes, log_p_errors);
LOG(INFO) << "Convergence order in p : " << v_convergence_order;
LOG(INFO) << "Correlation : " << v_correlation;
#if !defined(_DEBUG)
// SPRKs with odd convergence order have a higher convergence order in p.
EXPECT_THAT(
RelativeError(integrator.order + (integrator.order % 2),
v_convergence_order),
Lt(0.03));
EXPECT_THAT(v_correlation, AllOf(Gt(0.99), Lt(1.01)));
#endif
}
示例11: Gt
Gt operator>(const FieldType& fld, const FieldType& o2) {
return Gt(fld, o2);
}
示例12: Eq
static bool Eq(Value lhs, Value rhs) { return !Lt(lhs, rhs) && !Gt(lhs, rhs); }
示例13: pushToken__
void Parser::executeAction(int production) try {
if (d_token__ != _UNDETERMINED_)
pushToken__(d_token__); // save an already available token
// $insert defaultactionreturn
// save default non-nested block $$
if (int size = s_productionInfo[production].d_size)
d_val__ = d_vsp__[1 - size];
switch (production) {
// $insert actioncases
case 1:
#line 43 "parser.yy"
{
d_val__.get<Tag__::basic>() = d_vsp__[0].data<Tag__::basic>();
res = d_val__.get<Tag__::basic>();
} break;
case 2:
#line 51 "parser.yy"
{
d_val__.get<Tag__::basic>() = add(d_vsp__[-2].data<Tag__::basic>(),
d_vsp__[0].data<Tag__::basic>());
} break;
case 3:
#line 54 "parser.yy"
{
d_val__.get<Tag__::basic>() = sub(d_vsp__[-2].data<Tag__::basic>(),
d_vsp__[0].data<Tag__::basic>());
} break;
case 4:
#line 57 "parser.yy"
{
d_val__.get<Tag__::basic>() = mul(d_vsp__[-2].data<Tag__::basic>(),
d_vsp__[0].data<Tag__::basic>());
} break;
case 5:
#line 60 "parser.yy"
{
d_val__.get<Tag__::basic>() = div(d_vsp__[-2].data<Tag__::basic>(),
d_vsp__[0].data<Tag__::basic>());
} break;
case 6:
#line 63 "parser.yy"
{
auto tup = parse_implicit_mul(d_vsp__[-2].data<Tag__::string>());
if (neq(*std::get<1>(tup), *one)) {
d_val__.get<Tag__::basic>() = mul(
std::get<0>(tup),
pow(std::get<1>(tup), d_vsp__[0].data<Tag__::basic>()));
} else {
d_val__.get<Tag__::basic>()
= pow(std::get<0>(tup), d_vsp__[0].data<Tag__::basic>());
}
} break;
case 7:
#line 73 "parser.yy"
{
d_val__.get<Tag__::basic>() = pow(d_vsp__[-2].data<Tag__::basic>(),
d_vsp__[0].data<Tag__::basic>());
} break;
case 8:
#line 76 "parser.yy"
{
d_val__.get<Tag__::basic>() = rcp_static_cast<const Basic>(
Lt(d_vsp__[-2].data<Tag__::basic>(),
d_vsp__[0].data<Tag__::basic>()));
} break;
case 9:
#line 79 "parser.yy"
{
d_val__.get<Tag__::basic>() = rcp_static_cast<const Basic>(
Gt(d_vsp__[-2].data<Tag__::basic>(),
d_vsp__[0].data<Tag__::basic>()));
} break;
case 10:
#line 82 "parser.yy"
{
d_val__.get<Tag__::basic>() = rcp_static_cast<const Basic>(
Le(d_vsp__[-2].data<Tag__::basic>(),
d_vsp__[0].data<Tag__::basic>()));
} break;
case 11:
#line 85 "parser.yy"
{
d_val__.get<Tag__::basic>() = rcp_static_cast<const Basic>(
Ge(d_vsp__[-2].data<Tag__::basic>(),
d_vsp__[0].data<Tag__::basic>()));
} break;
//.........这里部分代码省略.........
示例14: TEST_P
TEST_P(SimpleHarmonicMotionTest, Convergence) {
parameters_.initial.positions.emplace_back(SIUnit<Length>());
parameters_.initial.momenta.emplace_back(Speed());
parameters_.initial.time = Time();
#if defined(_DEBUG)
parameters_.tmax = 1 * SIUnit<Time>();
#else
parameters_.tmax = 100 * SIUnit<Time>();
#endif
parameters_.sampling_period = 0;
parameters_.Δt = GetParam().beginning_of_convergence;
int const step_sizes = 50;
double const step_reduction = 1.1;
std::vector<double> log_step_sizes;
log_step_sizes.reserve(step_sizes);
std::vector<double> log_q_errors;
log_step_sizes.reserve(step_sizes);
std::vector<double> log_p_errors;
log_step_sizes.reserve(step_sizes);
for (int i = 0; i < step_sizes; ++i, parameters_.Δt /= step_reduction) {
integrator_->SolveTrivialKineticEnergyIncrement<Length>(
&ComputeHarmonicOscillatorAcceleration,
parameters_,
&solution_);
double const log_q_error = std::log10(
std::abs(solution_[0].positions[0].value / SIUnit<Length>() -
Cos(solution_[0].time.value *
SIUnit<AngularFrequency>())));
double const log_p_error = std::log10(
std::abs(solution_[0].momenta[0].value / SIUnit<Speed>() +
Sin(solution_[0].time.value *
SIUnit<AngularFrequency>())));
if (log_q_error <= -13 || log_p_error <= -13) {
// If we keep going the effects of finite precision will drown out
// convergence.
break;
}
log_step_sizes.push_back(std::log10(parameters_.Δt / SIUnit<Time>()));
log_q_errors.push_back(log_q_error);
log_p_errors.push_back(log_p_error);
}
double const q_convergence_order = Slope(log_step_sizes, log_q_errors);
double const q_correlation =
PearsonProductMomentCorrelationCoefficient(log_step_sizes, log_q_errors);
LOG(INFO) << GetParam();
LOG(INFO) << "Convergence order in q : " << q_convergence_order;
LOG(INFO) << "Correlation : " << q_correlation;
#if 0
LOG(INFO) << "Convergence data for q :\n" <<
BidimensionalDatasetMathematicaInput(log_step_sizes, log_q_errors);
#endif
#if !defined(_DEBUG)
EXPECT_THAT(RelativeError(GetParam().convergence_order, q_convergence_order),
Lt(0.02));
EXPECT_THAT(q_correlation, AllOf(Gt(0.99), Lt(1.01)));
#endif
double const v_convergence_order = Slope(log_step_sizes, log_p_errors);
double const v_correlation =
PearsonProductMomentCorrelationCoefficient(log_step_sizes, log_p_errors);
LOG(INFO) << "Convergence order in p : " << v_convergence_order;
LOG(INFO) << "Correlation : " << v_correlation;
#if 0
LOG(INFO) << "Convergence data for p :\n" <<
BidimensionalDatasetMathematicaInput(log_step_sizes, log_q_errors);
#endif
#if !defined(_DEBUG)
// SPRKs with odd convergence order have a higher convergence order in p.
EXPECT_THAT(
RelativeError(((GetParam().convergence_order + 1) / 2) * 2,
v_convergence_order),
Lt(0.02));
EXPECT_THAT(v_correlation, AllOf(Gt(0.99), Lt(1.01)));
#endif
}
示例15: TEST_F
TEST_F(ManœuvreTest, Apollo8SIVB) {
// Data from NASA's Saturn V Launch Vehicle, Flight Evaluation Report AS-503,
// Apollo 8 Mission (1969),
// http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690015314.pdf.
// We use the reconstructed or actual values.
// Table 2-2. Significant Event Times Summary.
Instant const range_zero;
Instant const s_ivb_1st_90_percent_thrust = range_zero + 530.53 * Second;
Instant const s_ivb_1st_eco = range_zero + 684.98 * Second;
// Initiate S-IVB Restart Sequence and Start of Time Base 6 (T6).
Instant const t6 = range_zero + 9659.54 * Second;
Instant const s_ivb_2nd_90_percent_thrust = range_zero + 10'240.02 * Second;
Instant const s_ivb_2nd_eco = range_zero + 10'555.51 * Second;
// From Table 7-2. S-IVB Steady State Performance - First Burn.
Force thrust_1st = 901'557 * Newton;
Speed specific_impulse_1st = 4'204.1 * Newton * Second / Kilogram;
Variation<Mass> lox_flowrate_1st = 178.16 * Kilogram / Second;
Variation<Mass> fuel_flowrate_1st = 36.30 * Kilogram / Second;
// From Table 7-7. S-IVB Steady State Performance - Second Burn.
Force thrust_2nd = 897'548 * Newton;
Speed specific_impulse_2nd = 4199.2 * Newton * Second / Kilogram;
Variation<Mass> lox_flowrate_2nd = 177.70 * Kilogram / Second;
Variation<Mass> fuel_flowrate_2nd = 36.01 * Kilogram / Second;
// Table 21-5. Total Vehicle Mass, S-IVB First Burn Phase, Kilograms.
Mass total_vehicle_at_s_ivb_1st_90_percent_thrust = 161143 * Kilogram;
Mass total_vehicle_at_s_ivb_1st_eco = 128095 * Kilogram;
// Table 21-7. Total Vehicle Mass, S-IVB Second Burn Phase, Kilograms.
Mass total_vehicle_at_s_ivb_2nd_90_percent_thrust = 126780 * Kilogram;
Mass total_vehicle_at_s_ivb_2nd_eco = 59285 * Kilogram;
// An arbitrary direction, we're not testing this.
Vector<double, World> e_y({0, 1, 0});
Manœuvre<World> first_burn(thrust_1st,
total_vehicle_at_s_ivb_1st_90_percent_thrust,
specific_impulse_1st, e_y);
EXPECT_THAT(RelativeError(lox_flowrate_1st + fuel_flowrate_1st,
first_burn.mass_flow()),
Lt(1E-4));
first_burn.set_duration(s_ivb_1st_eco - s_ivb_1st_90_percent_thrust);
EXPECT_THAT(
RelativeError(total_vehicle_at_s_ivb_1st_eco, first_burn.final_mass()),
Lt(1E-3));
first_burn.set_initial_time(s_ivb_1st_90_percent_thrust);
EXPECT_EQ(s_ivb_1st_eco, first_burn.final_time());
// Accelerations from Figure 4-4. Ascent Trajectory Acceleration Comparison.
// Final acceleration from Table 4-2. Comparison of Significant Trajectory
// Events.
EXPECT_THAT(
first_burn.acceleration()(first_burn.initial_time()).Norm(),
AllOf(Gt(5 * Metre / Pow<2>(Second)), Lt(6.25 * Metre / Pow<2>(Second))));
EXPECT_THAT(first_burn.acceleration()(range_zero + 600 * Second).Norm(),
AllOf(Gt(6.15 * Metre / Pow<2>(Second)),
Lt(6.35 * Metre / Pow<2>(Second))));
EXPECT_THAT(first_burn.acceleration()(first_burn.final_time()).Norm(),
AllOf(Gt(7.03 * Metre / Pow<2>(Second)),
Lt(7.05 * Metre / Pow<2>(Second))));
Manœuvre<World> second_burn(thrust_2nd,
total_vehicle_at_s_ivb_2nd_90_percent_thrust,
specific_impulse_2nd, e_y);
EXPECT_THAT(RelativeError(lox_flowrate_2nd + fuel_flowrate_2nd,
second_burn.mass_flow()),
Lt(2E-4));
second_burn.set_duration(s_ivb_2nd_eco - s_ivb_2nd_90_percent_thrust);
EXPECT_THAT(
RelativeError(total_vehicle_at_s_ivb_2nd_eco, second_burn.final_mass()),
Lt(2E-3));
second_burn.set_initial_time(s_ivb_2nd_90_percent_thrust);
EXPECT_EQ(s_ivb_2nd_eco, second_burn.final_time());
// Accelerations from Figure 4-9. Injection Phase Acceleration Comparison.
// Final acceleration from Table 4-2. Comparison of Significant Trajectory
// Events.
EXPECT_THAT(second_burn.acceleration()(second_burn.initial_time()).Norm(),
AllOf(Gt(7 * Metre / Pow<2>(Second)),
Lt(7.5 * Metre / Pow<2>(Second))));
EXPECT_THAT(second_burn.acceleration()(t6 + 650 * Second).Norm(),
AllOf(Gt(8 * Metre / Pow<2>(Second)),
Lt(8.02 * Metre / Pow<2>(Second))));
EXPECT_THAT(second_burn.acceleration()(t6 + 700 * Second).Norm(),
AllOf(Gt(8.8 * Metre / Pow<2>(Second)),
Lt(9 * Metre / Pow<2>(Second))));
EXPECT_THAT(second_burn.acceleration()(t6 + 750 * Second).Norm(),
AllOf(Gt(9.9 * Metre / Pow<2>(Second)),
Lt(10 * Metre / Pow<2>(Second))));
EXPECT_THAT(second_burn.acceleration()(t6 + 850 * Second).Norm(),
AllOf(Gt(12.97 * Metre / Pow<2>(Second)),
Lt(13 * Metre / Pow<2>(Second))));
EXPECT_THAT(second_burn.acceleration()(second_burn.final_time()).Norm(),
//.........这里部分代码省略.........