本文整理汇总了C++中Gamma函数的典型用法代码示例。如果您正苦于以下问题:C++ Gamma函数的具体用法?C++ Gamma怎么用?C++ Gamma使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了Gamma函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: temp
rowvec GridBdry::interp_normal(cube u) { //TODO
rowvec temp = zeros<rowvec>(Gamma.n_rows);
for(unsigned int i = 0; i < Gamma.n_rows; i++) {
temp(i) = u(Gamma(i, 0), Gamma(i, 1), 0)*n(i, 0) + u(Gamma(i, 0), Gamma(i, 1), 1)*n(i, 1);
}
return temp;
}
示例2: Gamma
void ThreePhaseDecoder::makePhase() {
int n = width * height;
float i1, i2, i3;
for (int i = 0; i < n; i++) {
i1 = (float) graySequence[0][i];
i2 = (float) graySequence[1][i];
i3 = (float) graySequence[2][i];
#ifdef USE_GAMMA
i1 = Gamma(i1 / 255.0, gamma) * 255.0;
i2 = Gamma(i2 / 255.0, gamma) * 255.0;
i3 = Gamma(i3 / 255.0, gamma) * 255.0;
#endif
range[i] = findRange(i1, i2, i3);
mask[i] = range[i] <= rangeThreshold;
ready[i] = !mask[i];
reflectivity[i] = (byte) ((i1 + i2 + i3) / 3);
if(ready[i])
phase[i] = atan2f(sqrtf(3) * (i1 - i3), 2.f * i2 - i1 - i3) / (float) TWO_PI;
}
#ifdef LINEARIZE_PHASE
if(linearize) {
buildLut();
applyLut();
}
#endif
}
示例3: Gamma
// ===========================================================
double Gamma(double u)
{
// Only for two particular cases:
// u = integer
// u = integer + 0.5
int cas;
double G;
int i;
int k;
k=(int)(u+0.5);
if(fabs(k-(int)u)<0.5) cas=1; else cas=2;
switch(cas)
{
case 1: // u integer
if(k==1) return 1;
G=1;
for(i=2;i<k;i++) G=G*i;
return G;
case 2: // u = k +1/2. We use the duplication formula
k=k-1;
G=sqrt(pi)*pow(2,1-2*k)*Gamma(2*k)/Gamma(k);
return G;
default:
ERROR("tools 79. In Gamma, u %f is neither inter nor half-integer");
}
}
示例4: FDistPDF
/// Probabiliy density function for F distribution
/// The F distribution is the ratio of two chi-square distributions with degrees
/// of freedom N1 and N2, respectively, where each chi-square has first been
/// divided by its degrees of freedom.
/// An F-test (Snedecor and Cochran, 1983) is used to test if the standard
/// deviations of two populations are equal. This test can be a two-tailed test or
/// a one-tailed test.
/// The F hypothesis test is defined as:
/// H0: s1 = s2 (sN is sigma or std deviation)
/// Ha: s1 < s2 for a lower one tailed test
/// s1 > s2 for an upper one tailed test
/// s1 != s2 for a two tailed test
/// Test Statistic: F = s1^2/s2^2 where s1^2 and s2^2 are the sample variances.
/// The more this ratio deviates from 1, the stronger the evidence for unequal
/// population variances. Significance Level is alpha, a probability (0<=alpha<=1).
/// The hypothesis that the two standard deviations are equal is rejected if
/// F > PP(alpha,N1-1,N2-1) for an upper one-tailed test
/// F < PP(1-alpha,N1-1,N2-1) for a lower one-tailed test
/// F < PP(1-alpha/2,N1-1,N2-1) for a two-tailed test
/// F > PP(alpha/2,N1-1,N2-1)
/// where PP(alpha,k-1,N-1) is the percent point function of the F distribution
/// [PPfunc is inverse of the CDF : PP(alpha,N1,N2) == F where alpha=CDF(F,N1,N2)]
/// with N1 and N2 degrees of freedom and a significance level of alpha.
///
/// Ref http://www.itl.nist.gov/div898/handbook/ 1.3.6.6.5
/// @param x probability or significance level of the test, >=0 and < 1
/// @param n1 degrees of freedom of first sample, n1 > 0
/// @param n2 degrees of freedom of second sample, n2 > 0
/// @return the statistic (a ratio variance1/variance2) at this prob
double FDistPDF(double x, int n1, int n2) throw(Exception)
{
try {
double dn1(n1),dn2(n2);
double F = Gamma((dn1+dn2)/2.0) / (Gamma(dn1/2.0)*Gamma(dn2/2.0));
F *= ::pow(dn1/dn2,dn1/2.0) * ::pow(x,dn1/2.0 - 1.0);
F /= ::pow(1.0+x*dn1/dn2,(dn1+dn2)/2.0);
return F;
}
catch(Exception& e) { GPSTK_RETHROW(e); }
}
示例5: sprintf
// Load B-V conversion parameters from config file
void StelSkyDrawer::initColorTableFromConfigFile(QSettings* conf)
{
std::map<float,Vec3f> color_map;
for (float bV=-0.5f;bV<=4.0f;bV+=0.01)
{
char entry[256];
sprintf(entry,"bv_color_%+5.2f",bV);
const QStringList s(conf->value(QString("stars/") + entry).toStringList());
if (!s.isEmpty())
{
Vec3f c;
if (s.size()==1)
c = StelUtils::strToVec3f(s[0]);
else
c =StelUtils::strToVec3f(s);
color_map[bV] = Gamma(eye->getDisplayGamma(),c);
}
}
if (color_map.size() > 1)
{
for (int i=0;i<128;i++)
{
const float bV = StelSkyDrawer::indexToBV(i);
std::map<float,Vec3f>::const_iterator greater(color_map.upper_bound(bV));
if (greater == color_map.begin())
{
colorTable[i] = greater->second;
}
else
{
std::map<float,Vec3f>::const_iterator less(greater);--less;
if (greater == color_map.end())
{
colorTable[i] = less->second;
}
else
{
colorTable[i] = Gamma(1.f/eye->getDisplayGamma(), ((bV-less->first)*greater->second + (greater->first-bV)*less->second) *(1.f/(greater->first-less->first)));
}
}
}
}
// QString res;
// for (int i=0;i<128;i++)
// {
// res += QString("Vec3f(%1,%2,%3),\n").arg(colorTable[i][0], 0, 'g', 6).arg(colorTable[i][1], 0, 'g', 6).arg(colorTable[i][2], 0, 'g', 6);
// }
// qDebug() << res;
}
示例6: besselpoly
double besselpoly(double a, double lambda, double nu) {
int m, factor=0;
double Sm, relerr, Sol;
double sum=0.0;
/* Special handling for a = 0.0 */
if (a == 0.0) {
if (nu == 0.0) return 1.0/(lambda + 1);
else return 0.0;
}
/* Special handling for negative and integer nu */
if ((nu < 0) && (floor(nu)==nu)) {
nu = -nu;
factor = ((int) nu) % 2;
}
Sm = exp(nu*log(a))/(/*cephes_*/Gamma(nu+1)*(lambda+nu+1));
m = 0;
do {
sum += Sm;
Sol = Sm;
Sm *= -a*a*(lambda+nu+1+2*m)/((nu+m+1)*(m+1)*(lambda+nu+1+2*m+2));
m++;
relerr = fabs((Sm-Sol)/Sm);
} while (relerr > EPS && m < 1000);
if (!factor)
return sum;
else
return -sum;
}
示例7: autonomous
task autonomous()
{
StartTask(descore);
StartTask(velocitycalculator);
if(SensorValue[J1]) // blue
{
if(SensorValue[J2]) //normal
{
// RAM
ArmWall();
ForwardTillStop(127);
}
else // oppo
{
Gamma();
}
}
else // red
{
if(SensorValue[J2]) // normal
{
Beta();
}
else // oppo
{
Delta();
}
}
StopTask(velocitycalculator);
}
示例8: _nbi
void MR::calcMagnetizations() {
for( size_t i = 0; i < G.nrNodes(); i++ ) {
if( props.updates == Properties::UpdateType::FULL ) {
// find indices in nb(i)
sub_nb _nbi( G.nb(i).size() );
_nbi.set();
// calc numerator1 and denominator1
Real sum_even, sum_odd;
sum_subs(i, _nbi, &sum_even, &sum_odd);
Mag[i] = (tanh(theta[i]) * sum_even + sum_odd) / (sum_even + tanh(theta[i]) * sum_odd);
} else if( props.updates == Properties::UpdateType::LINEAR ) {
sub_nb empty( G.nb(i).size() );
Mag[i] = T(i,empty);
for( size_t _l1 = 0; _l1 < G.nb(i).size(); _l1++ )
for( size_t _l2 = _l1 + 1; _l2 < G.nb(i).size(); _l2++ )
Mag[i] += Gamma(i,_l1,_l2) * tJ[i][_l1] * tJ[i][_l2] * cors[i][_l1][_l2];
}
if( abs( Mag[i] ) > 1.0 )
Mag[i] = (Mag[i] > 0.0) ? 1.0 : -1.0;
}
}
示例9: rf_gauss
double rf_gauss (double d2, const double *a)
{ /* --- (general.) Gaussian function */
double ma; /* temporary buffer for m/a */
if (d2 < 0) { /* if to the get normalization factor */
if (a[0] <= 0) return 0; /* check whether the integral exists */
if (a[0] == 2) /* use simplified formula for a = 2 */
return pow(2*M_PI, 0.5*d2);
ma = -d2 /a[0];
d2 *= -0.5; /* m/a and m/2 (m = number of dims.) */
return (a[0] *Gamma(d2)) / (pow(2, ma+1) *pow(M_PI, d2) *Gamma(ma));
} /* return the normalization factor */
if (a[0] != 2) /* raise distance to the given power */
d2 = pow(d2, 0.5*a[0]); /* (note that d2 is already squared) */
return exp(-0.5 *d2); /* compute Gaussian function */
} /* rf_gauss() */
示例10: errMsg
//__________________________________________________________________________________
_PMathObj _Constant::IGamma (_PMathObj arg)
{
if (arg->ObjectClass()!=NUMBER) {
_String errMsg ("A non-numerical argument passed to IGamma(a,x)");
WarnError (errMsg);
return new _Constant (0.0);
}
_Parameter x = ((_Constant*)arg)->theValue, sum=0.0;
if (x>1e25) {
x=1e25;
} else if (x<0) {
_String errMsg ("The domain of x is {x>0} for IGamma (a,x)");
WarnError (errMsg);
return new _Constant (0.0);
} else if (x==0.0) {
return new _Constant (0.0);
}
if (x<=theValue+1) // use the series representation
// IGamma (a,x)=exp(-x) x^a \sum_{n=0}^{\infty} \frac{\Gamma((a)}{\Gamma(a+1+n)} x^n
{
_Parameter term = 1.0/theValue, den = theValue+1;
long count = 0;
while ((fabs(term)>=fabs(sum)*machineEps)&&(count<500)) {
sum+=term;
term*=x/den;
den += 1.0;
count++;
}
} else // use the continue fraction representation
// IGamma (a,x)=exp(-x) x^a 1/x+/1-a/1+/1/x+/2-a/1+/2/x+...
{
_Parameter lastTerm = 0, a0 = 1.0, a1 = x, b0 = 0.0, b1 = 1.0, factor = 1.0, an, ana, anf;
for (long count = 1; count<500; count++) {
an = count;
ana = an - theValue;
a0 = (a1+a0*ana)*factor;
b0 = (b1+b0*ana)*factor;
anf = an*factor;
a1 = x*a0+anf*a1;
b1 = x*b0+anf*b1;
if (a1!=0.0) {
factor=1.0/a1;
sum = b1*factor;
if (fabs(sum-lastTerm)/sum<machineEps) {
break;
}
lastTerm = sum;
}
}
}
_Constant *result = (_Constant*)Gamma();
result->SetValue(sum*exp(-x+theValue*log(x))/result->theValue);
if (x>theValue+1) {
result->SetValue (1.0-result->theValue);
}
return result;
}
示例11: dimensionedScalar
tmp<fvMatrix<Type> >
laplacian
(
GeometricField<Type, fvPatchField, volMesh>& vf
)
{
surfaceScalarField Gamma
(
IOobject
(
"1",
vf.time().constant(),
vf.mesh(),
IOobject::NO_READ
),
vf.mesh(),
dimensionedScalar("1", dimless, 1.0)
);
return fvm::laplacian
(
Gamma,
vf,
"laplacian(" + vf.name() + ')'
);
}
示例12: FinalKick
void FinalKick(particle_t *SPH, double dt){
#pragma omp parallel for
for(int i = 0 ; i < N_SPHP ; ++ i){
SPH[i].v = SPH[i].v_h + 0.5 * dt * SPH[i].a ;
SPH[i].u = SPH[i].u_h + 0.5 * dt * SPH[i].u_dot;
SPH[i].Y = SPH[i].Y_h + 0.5 * dt * SPH[i].m * (Gamma(SPH[i].rho, SPH[i].u, SPH[i].p_smth) - 1.0) * SPH[i].u_dot;
}
}
示例13: TimeEvolve
/*
void TimeEvolve(particle_t *SPH, double dt){
#pragma omp parallel for
for(int i = 0 ; i < N_SPHP ; ++ i){
SPH[i].r += SPH[i].v * dt + 0.5 * SPH[i].a * dt * dt;
SPH[i].v += SPH[i].a * dt;
SPH[i].u += SPH[i].u_dot * dt;
SPH[i].rho += - SPH[i].rho * SPH[i].div_v * dt;
SPH[i].h += SPH[i].h * SPH[i].div_v * dt;
}
}
*/
void InitialKick(particle_t *SPH, double dt){
#pragma omp parallel for
for(int i = 0 ; i < N_SPHP ; ++ i){
SPH[i].v_h = SPH[i].v + 0.5 * dt * SPH[i].a ;
SPH[i].u_h = SPH[i].u + 0.5 * dt * SPH[i].u_dot;//Gammaにsmoothed pを送るのはすごく重要。
SPH[i].Y_h = SPH[i].Y + 0.5 * dt * SPH[i].m * (Gamma(SPH[i].rho, SPH[i].u, SPH[i].p_smth) - 1.0) * SPH[i].u_dot;
}
}
示例14: Predict
void Predict(particle_t *SPH, double dt){
#pragma omp parallel for
for(int i = 0 ; i < N_SPHP ; ++ i){
SPH[i].v += dt * SPH[i].a ;
SPH[i].u += dt * SPH[i].u_dot;
SPH[i].Y += dt * SPH[i].m * (Gamma(SPH[i].rho, SPH[i].u, SPH[i].p_smth) - 1.0) * SPH[i].u_dot;
}
}
示例15: Dirichlet
/* Returns a sample from Dirichlet(n,a) where n is dimensionality */
int Dirichlet(RndState *S, long n, double *a, double *x)
{
long i;
double tot=0, z;
for (i=0; i<n; i++) { z=Gamma(S,a[i]); tot+=z; x[i]=z; }
for (i=0; i<n; i++) { x[i]/=tot; }
return 1;
}