本文整理汇总了C++中FINITE_RNK函数的典型用法代码示例。如果您正苦于以下问题:C++ FINITE_RNK函数的具体用法?C++ FINITE_RNK怎么用?C++ FINITE_RNK使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了FINITE_RNK函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: X
/* Check if the vecsz/sz strides are consistent with the problem
being in-place for vecsz.dim[vdim], or for all dimensions
if vdim == RNK_MINFTY. We can't just use tensor_inplace_strides
because rdft transforms have the unfortunate property of
differing input and output sizes. This routine is not
exhaustive; we only return 1 for the most common case. */
int X(rdft2_inplace_strides)(const problem_rdft2 *p, int vdim)
{
INT N, Nc;
INT rs, cs;
int i;
for (i = 0; i + 1 < p->sz->rnk; ++i)
if (p->sz->dims[i].is != p->sz->dims[i].os)
return 0;
if (!FINITE_RNK(p->vecsz->rnk) || p->vecsz->rnk == 0)
return 1;
if (!FINITE_RNK(vdim)) { /* check all vector dimensions */
for (vdim = 0; vdim < p->vecsz->rnk; ++vdim)
if (!X(rdft2_inplace_strides)(p, vdim))
return 0;
return 1;
}
A(vdim < p->vecsz->rnk);
if (p->sz->rnk == 0)
return(p->vecsz->dims[vdim].is == p->vecsz->dims[vdim].os);
N = X(tensor_sz)(p->sz);
Nc = (N / p->sz->dims[p->sz->rnk-1].n) *
(p->sz->dims[p->sz->rnk-1].n/2 + 1);
X(rdft2_strides)(p->kind, p->sz->dims + p->sz->rnk - 1, &rs, &cs);
/* the factor of 2 comes from the fact that RS is the stride
of p->r0 and p->r1, which is twice as large as the strides
in the r2r case */
return(p->vecsz->dims[vdim].is == p->vecsz->dims[vdim].os
&& (X(iabs)(2 * p->vecsz->dims[vdim].os)
>= X(imax)(2 * Nc * X(iabs)(cs), N * X(iabs)(rs))));
}
示例2: X
/* Check if the vecsz/sz strides are consistent with the problem
being in-place for vecsz.dim[vdim], or for all dimensions
if vdim == RNK_MINFTY. We can't just use tensor_inplace_strides
because rdft transforms have the unfortunate property of
differing input and output sizes. This routine is not
exhaustive; we only return 1 for the most common case. */
int X(rdft2_inplace_strides)(const problem_rdft2 *p, int vdim)
{
int N, Nc;
int is, os;
int i;
for (i = 0; i + 1 < p->sz->rnk; ++i)
if (p->sz->dims[i].is != p->sz->dims[i].os)
return 0;
if (!FINITE_RNK(p->vecsz->rnk) || p->vecsz->rnk == 0)
return 1;
if (!FINITE_RNK(vdim)) { /* check all vector dimensions */
for (vdim = 0; vdim < p->vecsz->rnk; ++vdim)
if (!X(rdft2_inplace_strides)(p, vdim))
return 0;
return 1;
}
A(vdim < p->vecsz->rnk);
if (p->sz->rnk == 0)
return(p->vecsz->dims[vdim].is == p->vecsz->dims[vdim].os);
N = X(tensor_sz)(p->sz);
Nc = (N / p->sz->dims[p->sz->rnk-1].n) *
(p->sz->dims[p->sz->rnk-1].n/2 + 1);
X(rdft2_strides)(p->kind, p->sz->dims + p->sz->rnk - 1, &is, &os);
return(p->vecsz->dims[vdim].is == p->vecsz->dims[vdim].os
&& X(iabs)(p->vecsz->dims[vdim].os)
>= X(imax)(Nc * X(iabs)(os), N * X(iabs)(is)));
}
示例3: X
/* The inverse of X(tensor_append): splits the sz tensor into
tensor a followed by tensor b, where a's rank is arnk. */
void X(tensor_split)(const tensor *sz, tensor **a, int arnk, tensor **b)
{
A(FINITE_RNK(sz->rnk) && FINITE_RNK(arnk));
*a = X(tensor_copy_sub)(sz, 0, arnk);
*b = X(tensor_copy_sub)(sz, arnk, sz->rnk - arnk);
}
示例4: A
tensor *X(mktensor)(int rnk)
{
tensor *x;
A(rnk >= 0);
#if defined(STRUCT_HACK_KR)
if (FINITE_RNK(rnk) && rnk > 1)
x = (tensor *)MALLOC(sizeof(tensor) + (rnk - 1) * sizeof(iodim),
TENSORS);
else
x = (tensor *)MALLOC(sizeof(tensor), TENSORS);
#elif defined(STRUCT_HACK_C99)
if (FINITE_RNK(rnk))
x = (tensor *)MALLOC(sizeof(tensor) + rnk * sizeof(iodim),
TENSORS);
else
x = (tensor *)MALLOC(sizeof(tensor), TENSORS);
#else
x = (tensor *)MALLOC(sizeof(tensor), TENSORS);
if (FINITE_RNK(rnk) && rnk > 0)
x->dims = (iodim *)MALLOC(sizeof(iodim) * rnk, TENSORS);
else
x->dims = 0;
#endif
x->rnk = rnk;
return x;
}
示例5: verify_rdft2
void verify_rdft2(bench_problem *p, int rounds, double tol, errors *e)
{
C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
int n, vecn, N;
dofft_rdft2_closure k;
BENCH_ASSERT(p->kind == PROBLEM_REAL);
if (!FINITE_RNK(p->sz->rnk) || !FINITE_RNK(p->vecsz->rnk))
return; /* give up */
k.k.apply = rdft2_apply;
k.k.recopy_input = 0;
k.p = p;
if (rounds == 0)
rounds = 20; /* default value */
n = tensor_sz(p->sz);
vecn = tensor_sz(p->vecsz);
N = n * vecn;
inA = (C *) bench_malloc(N * sizeof(C));
inB = (C *) bench_malloc(N * sizeof(C));
inC = (C *) bench_malloc(N * sizeof(C));
outA = (C *) bench_malloc(N * sizeof(C));
outB = (C *) bench_malloc(N * sizeof(C));
outC = (C *) bench_malloc(N * sizeof(C));
tmp = (C *) bench_malloc(N * sizeof(C));
e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC,
tmp, rounds, tol);
e->l = linear(&k.k, 1, N, inA, inB, inC, outA, outB, outC,
tmp, rounds, tol);
e->s = 0.0;
if (p->sign < 0)
e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
inA, inB, outA, outB,
tmp, rounds, tol, TIME_SHIFT));
else
e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
inA, inB, outA, outB,
tmp, rounds, tol, FREQ_SHIFT));
if (!p->in_place && !p->destroy_input)
preserves_input(&k.k, p->sign < 0 ? mkreal : mkhermitian1,
N, inA, inB, outB, rounds);
bench_free(tmp);
bench_free(outC);
bench_free(outB);
bench_free(outA);
bench_free(inC);
bench_free(inB);
bench_free(inA);
}
示例6: applicable0
static int applicable0(const solver *ego_, const problem *p_, int *rp)
{
const problem_rdft *p = (const problem_rdft *) p_;
const S *ego = (const S *)ego_;
return (1
&& FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk)
&& p->sz->rnk >= 2
&& picksplit(ego, p->sz, rp)
);
}
示例7: X
tensor *X(tensor_append)(const tensor *a, const tensor *b)
{
if (!FINITE_RNK(a->rnk) || !FINITE_RNK(b->rnk)) {
return X(mktensor)(RNK_MINFTY);
} else {
tensor *x = X(mktensor)(a->rnk + b->rnk);
dimcpy(x->dims, a->dims, a->rnk);
dimcpy(x->dims + a->rnk, b->dims, b->rnk);
return x;
}
}
示例8: while
/* do what I mean */
static bench_tensor *dwim(bench_tensor *t, bench_iodim **last_iodim,
n_transform nti, n_transform nto,
bench_iodim *dt)
{
int i;
bench_iodim *d, *d1;
if (!FINITE_RNK(t->rnk) || t->rnk < 1)
return t;
i = t->rnk;
d1 = *last_iodim;
while (--i >= 0) {
d = t->dims + i;
if (!d->is)
d->is = d1->is * transform_n(d1->n, d1==dt ? nti : SAME);
if (!d->os)
d->os = d1->os * transform_n(d1->n, d1==dt ? nto : SAME);
d1 = d;
}
*last_iodim = d1;
return t;
}
示例9: dimcpy
static void dimcpy(iodim *dst, const iodim *src, int rnk)
{
int i;
if (FINITE_RNK(rnk))
for (i = 0; i < rnk; ++i)
dst[i] = src[i];
}
示例10: fftw_tensor_contiguous
/* Like tensor_copy, but eliminate n == 1 dimensions, which
never affect any transform or transform vector.
Also, we sort the tensor into a canonical order of decreasing
is. In general, processing a loop/array in order of
decreasing stride will improve locality; sorting also makes the
analysis in fftw_tensor_contiguous (below) easier. The choice
of is over os is mostly arbitrary, and hopefully
shouldn't affect things much. Normally, either the os will be
in the same order as is (for e.g. multi-dimensional
transforms) or will be in opposite order (e.g. for Cooley-Tukey
recursion). (Both forward and backwards traversal of the tensor
are considered e.g. by vrank-geq1, so sorting in increasing
vs. decreasing order is not really important.) */
tensor *X(tensor_compress)(const tensor *sz)
{
int i, rnk;
tensor *x;
A(FINITE_RNK(sz->rnk));
for (i = rnk = 0; i < sz->rnk; ++i) {
A(sz->dims[i].n > 0);
if (sz->dims[i].n != 1)
++rnk;
}
x = X(mktensor)(rnk);
for (i = rnk = 0; i < sz->rnk; ++i) {
if (sz->dims[i].n != 1)
x->dims[rnk++] = sz->dims[i];
}
if (rnk > 1) {
qsort(x->dims, (size_t)x->rnk, sizeof(iodim),
(int (*)(const void *, const void *))X(dimcmp));
}
return x;
}
示例11: A
problem *X(mkproblem_dft)(const tensor *sz, const tensor *vecsz,
R *ri, R *ii, R *ro, R *io)
{
problem_dft *ego =
(problem_dft *)X(mkproblem)(sizeof(problem_dft), &padt);
A((ri == ro) == (ii == io)); /* both in place or both out of place */
A(X(tensor_kosherp)(sz));
A(X(tensor_kosherp)(vecsz));
/* enforce pointer equality if untainted pointers are equal */
if (UNTAINT(ri) == UNTAINT(ro))
ri = ro = JOIN_TAINT(ri, ro);
if (UNTAINT(ii) == UNTAINT(io))
ii = io = JOIN_TAINT(ii, io);
/* more correctness conditions: */
A(TAINTOF(ri) == TAINTOF(ii));
A(TAINTOF(ro) == TAINTOF(io));
ego->sz = X(tensor_compress)(sz);
ego->vecsz = X(tensor_compress_contiguous)(vecsz);
ego->ri = ri;
ego->ii = ii;
ego->ro = ro;
ego->io = io;
A(FINITE_RNK(ego->sz->rnk));
return &(ego->super);
}
示例12: applicable0
static int applicable0(const solver *ego_, const problem *p_,
const planner *plnr)
{
const S *ego = (const S *) ego_;
const problem_rdft *p = (const problem_rdft *) p_;
return (1
&& FINITE_RNK(p->vecsz->rnk)
/* problem must be a nontrivial transform, not just a copy */
&& p->sz->rnk > 0
&& (0
/* problem must be in-place & require some
rearrangement of the data */
|| (p->I == p->O
&& !(X(tensor_inplace_strides2)(p->sz, p->vecsz)))
/* or problem must be out of place, transforming
from stride 1/2 to bigger stride, for apply_after */
|| (p->I != p->O && ego->adt->apply == apply_after
&& !NO_DESTROY_INPUTP(plnr)
&& X(tensor_min_istride)(p->sz) <= 2
&& X(tensor_min_ostride)(p->sz) > 2)
/* or problem must be out of place, transforming
to stride 1/2 from bigger stride, for apply_before */
|| (p->I != p->O && ego->adt->apply == apply_before
&& X(tensor_min_ostride)(p->sz) <= 2
&& X(tensor_min_istride)(p->sz) > 2)
)
);
}
示例13: applicable0
static int applicable0(const problem *p_)
{
const problem_dft *p = (const problem_dft *) p_;
return ((p->sz->rnk == 1 && p->vecsz->rnk == 0)
|| (p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk))
);
}
示例14: tensor_rowmajor_transposedp
static int tensor_rowmajor_transposedp(bench_tensor *t)
{
bench_iodim *d;
int i;
BENCH_ASSERT(FINITE_RNK(t->rnk));
if (t->rnk < 2)
return 0;
d = t->dims;
if (d[0].is != d[1].is * d[1].n
|| d[0].os != d[1].is
|| d[1].os != d[0].os * d[0].n)
return 0;
if (t->rnk > 2 && d[1].is != d[2].is * d[2].n)
return 0;
for (i = 2; i + 1 < t->rnk; ++i) {
d = t->dims + i;
if (d[0].is != d[1].is * d[1].n
|| d[0].os != d[1].os * d[1].n)
return 0;
}
if (t->rnk > 2 && t->dims[t->rnk-1].is != t->dims[t->rnk-1].os)
return 0;
return 1;
}
示例15: A
problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz,
R *r0, R *r1, R *cr, R *ci,
rdft_kind kind)
{
problem_rdft2 *ego;
A(kind == R2HC || kind == R2HCII || kind == HC2R || kind == HC2RIII);
A(X(tensor_kosherp)(sz));
A(X(tensor_kosherp)(vecsz));
A(FINITE_RNK(sz->rnk));
/* require in-place problems to use r0 == cr */
if (UNTAINT(r0) == UNTAINT(ci))
return X(mkproblem_unsolvable)();
/* FIXME: should check UNTAINT(r1) == UNTAINT(cr) but
only if odd elements exist, which requires compressing the
tensors first */
if (UNTAINT(r0) == UNTAINT(cr))
r0 = cr = JOIN_TAINT(r0, cr);
ego = (problem_rdft2 *)X(mkproblem)(sizeof(problem_rdft2), &padt);
if (sz->rnk > 1) { /* have to compress rnk-1 dims separately, ugh */
tensor *szc = X(tensor_copy_except)(sz, sz->rnk - 1);
tensor *szr = X(tensor_copy_sub)(sz, sz->rnk - 1, 1);
tensor *szcc = X(tensor_compress)(szc);
if (szcc->rnk > 0)
ego->sz = X(tensor_append)(szcc, szr);
else
ego->sz = X(tensor_compress)(szr);
X(tensor_destroy2)(szc, szr); X(tensor_destroy)(szcc);
} else {
ego->sz = X(tensor_compress)(sz);
}
ego->vecsz = X(tensor_compress_contiguous)(vecsz);
ego->r0 = r0;
ego->r1 = r1;
ego->cr = cr;
ego->ci = ci;
ego->kind = kind;
A(FINITE_RNK(ego->sz->rnk));
return &(ego->super);
}