本文整理汇总了C++中EXT3_I函数的典型用法代码示例。如果您正苦于以下问题:C++ EXT3_I函数的具体用法?C++ EXT3_I怎么用?C++ EXT3_I使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了EXT3_I函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: ext3_release_file
/*
* Called when an inode is released. Note that this is different
* from ext3_file_open: open gets called at every open, but release
* gets called only when /all/ the files are closed.
*/
static int ext3_release_file (struct inode * inode, struct file * filp)
{
/* if we are the last writer on the inode, drop the block reservation */
if ((filp->f_mode & FMODE_WRITE) &&
(atomic_read(&inode->i_writecount) == 1))
{
mutex_lock(&EXT3_I(inode)->truncate_mutex);
ext3_discard_reservation(inode);
mutex_unlock(&EXT3_I(inode)->truncate_mutex);
}
if (is_dx(inode) && filp->private_data)
ext3_htree_free_dir_info(filp->private_data);
return 0;
}
示例2: truncate_restart_transaction
/*
* Restart the transaction associated with *handle. This does a commit,
* so before we call here everything must be consistently dirtied against
* this transaction.
*/
static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
{
int ret;
jbd_debug(2, "restarting handle %p\n", handle);
/*
* Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
* At this moment, get_block can be called only for blocks inside
* i_size since page cache has been already dropped and writes are
* blocked by i_mutex. So we can safely drop the truncate_mutex.
*/
mutex_unlock(&EXT3_I(inode)->truncate_mutex);
ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
mutex_lock(&EXT3_I(inode)->truncate_mutex);
return ret;
}
示例3: ext3_sync_file
int ext3_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
{
struct inode *inode = file->f_mapping->host;
struct ext3_inode_info *ei = EXT3_I(inode);
journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
int ret, needs_barrier = 0;
tid_t commit_tid;
trace_ext3_sync_file_enter(file, datasync);
if (inode->i_sb->s_flags & MS_RDONLY)
return 0;
ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
if (ret)
goto out;
J_ASSERT(ext3_journal_current_handle() == NULL);
/*
* data=writeback,ordered:
* The caller's filemap_fdatawrite()/wait will sync the data.
* Metadata is in the journal, we wait for a proper transaction
* to commit here.
*
* data=journal:
* filemap_fdatawrite won't do anything (the buffers are clean).
* ext3_force_commit will write the file data into the journal and
* will wait on that.
* filemap_fdatawait() will encounter a ton of newly-dirtied pages
* (they were dirtied by commit). But that's OK - the blocks are
* safe in-journal, which is all fsync() needs to ensure.
*/
if (ext3_should_journal_data(inode)) {
ret = ext3_force_commit(inode->i_sb);
goto out;
}
if (datasync)
commit_tid = atomic_read(&ei->i_datasync_tid);
else
commit_tid = atomic_read(&ei->i_sync_tid);
if (test_opt(inode->i_sb, BARRIER) &&
!journal_trans_will_send_data_barrier(journal, commit_tid))
needs_barrier = 1;
log_start_commit(journal, commit_tid);
ret = log_wait_commit(journal, commit_tid);
/*
* In case we didn't commit a transaction, we have to flush
* disk caches manually so that data really is on persistent
* storage
*/
if (needs_barrier)
blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
out:
trace_ext3_sync_file_exit(inode, ret);
return ret;
}
示例4: find_group_other
static int find_group_other(struct super_block *sb, struct inode *parent)
{
int parent_group = EXT3_I(parent)->i_block_group;
int ngroups = EXT3_SB(sb)->s_groups_count;
struct ext3_group_desc *desc;
struct buffer_head *bh;
int group, i;
/*
* Try to place the inode in its parent directory
*/
group = parent_group;
desc = ext3_get_group_desc (sb, group, &bh);
if (desc && le16_to_cpu(desc->bg_free_inodes_count) &&
le16_to_cpu(desc->bg_free_blocks_count))
return group;
/*
* We're going to place this inode in a different blockgroup from its
* parent. We want to cause files in a common directory to all land in
* the same blockgroup. But we want files which are in a different
* directory which shares a blockgroup with our parent to land in a
* different blockgroup.
*
* So add our directory's i_ino into the starting point for the hash.
*/
group = (group + parent->i_ino) % ngroups;
/*
* Use a quadratic hash to find a group with a free inode and some free
* blocks.
*/
for (i = 1; i < ngroups; i <<= 1) {
group += i;
if (group >= ngroups)
group -= ngroups;
desc = ext3_get_group_desc (sb, group, &bh);
if (desc && le16_to_cpu(desc->bg_free_inodes_count) &&
le16_to_cpu(desc->bg_free_blocks_count))
return group;
}
/*
* That failed: try linear search for a free inode, even if that group
* has no free blocks.
*/
group = parent_group;
for (i = 0; i < ngroups; i++) {
if (++group >= ngroups)
group = 0;
desc = ext3_get_group_desc (sb, group, &bh);
if (desc && le16_to_cpu(desc->bg_free_inodes_count))
return group;
}
return -1;
}
示例5: ext3_release_file
/*
* Called when an inode is released. Note that this is different
* from ext3_file_open: open gets called at every open, but release
* gets called only when /all/ the files are closed.
*/
static int ext3_release_file (struct inode * inode, struct file * filp)
{
if (ext3_test_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE)) {
filemap_flush(inode->i_mapping);
ext3_clear_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
}
/* if we are the last writer on the inode, drop the block reservation */
if ((filp->f_mode & FMODE_WRITE) &&
(atomic_read(&inode->i_writecount) == 1))
{
mutex_lock(&EXT3_I(inode)->truncate_mutex);
ext3_discard_reservation(inode);
mutex_unlock(&EXT3_I(inode)->truncate_mutex);
}
if (is_dx(inode) && filp->private_data)
ext3_htree_free_dir_info(filp->private_data);
return 0;
}
示例6: mlowerfs_ext3_should_journal_data
static inline int mlowerfs_ext3_should_journal_data(struct inode *inode)
{
if (!S_ISREG(inode->i_mode))
return 1;
if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA)
return 1;
if (EXT3_I(inode)->i_flags & EXT3_JOURNAL_DATA_FL)
return 1;
return 0;
}
示例7: ext3_get_acl
/*
* Inode operation get_posix_acl().
*
* inode->i_sem: don't care
* BKL: held
*/
struct posix_acl *
ext3_get_acl(struct inode *inode, int type)
{
const size_t max_size = ext3_acl_size(EXT3_ACL_MAX_ENTRIES);
struct ext3_inode_info *ei = EXT3_I(inode);
int name_index;
char *value;
struct posix_acl *acl;
int retval;
if (!IS_POSIXACL(inode))
return 0;
switch(type) {
case ACL_TYPE_ACCESS:
if (ei->i_acl != EXT3_ACL_NOT_CACHED)
return posix_acl_dup(ei->i_acl);
name_index = EXT3_XATTR_INDEX_POSIX_ACL_ACCESS;
break;
case ACL_TYPE_DEFAULT:
if (ei->i_default_acl != EXT3_ACL_NOT_CACHED)
return posix_acl_dup(ei->i_default_acl);
name_index = EXT3_XATTR_INDEX_POSIX_ACL_DEFAULT;
break;
default:
return ERR_PTR(-EINVAL);
}
value = kmalloc(max_size, GFP_KERNEL);
if (!value)
return ERR_PTR(-ENOMEM);
retval = ext3_xattr_get(inode, name_index, "", value, max_size);
acl = ERR_PTR(retval);
if (retval > 0)
acl = ext3_acl_from_disk(value, retval);
else if (retval == -ENODATA || retval == -ENOSYS)
acl = NULL;
kfree(value);
if (!IS_ERR(acl)) {
switch(type) {
case ACL_TYPE_ACCESS:
ei->i_acl = posix_acl_dup(acl);
break;
case ACL_TYPE_DEFAULT:
ei->i_default_acl = posix_acl_dup(acl);
break;
}
}
return acl;
}
示例8: ERR_PTR
/*
* There are two policies for allocating an inode. If the new inode is
* a directory, then a forward search is made for a block group with both
* free space and a low directory-to-inode ratio; if that fails, then of
* the groups with above-average free space, that group with the fewest
* directories already is chosen.
*
* For other inodes, search forward from the parent directory's block
* group to find a free inode.
*/
struct inode *ext3_new_inode(handle_t *handle, struct inode * dir, int mode)
{
struct super_block *sb;
struct buffer_head *bitmap_bh = NULL;
struct buffer_head *bh2;
int group;
unsigned long ino = 0;
struct inode * inode;
struct ext3_group_desc * gdp = NULL;
struct ext3_super_block * es;
struct ext3_inode_info *ei;
struct ext3_sb_info *sbi;
int err = 0;
struct inode *ret;
int i;
/* Cannot create files in a deleted directory */
if (!dir || !dir->i_nlink)
return ERR_PTR(-EPERM);
sb = dir->i_sb;
inode = new_inode(sb);
if (!inode)
return ERR_PTR(-ENOMEM);
ei = EXT3_I(inode);
sbi = EXT3_SB(sb);
es = sbi->s_es;
if (S_ISDIR(mode)) {
if (test_opt (sb, OLDALLOC))
group = find_group_dir(sb, dir);
else
group = find_group_orlov(sb, dir);
} else
group = find_group_other(sb, dir);
err = -ENOSPC;
if (group == -1)
goto out;
for (i = 0; i < sbi->s_groups_count; i++) {
err = -EIO;
gdp = ext3_get_group_desc(sb, group, &bh2);
if (!gdp)
goto fail;
brelse(bitmap_bh);
bitmap_bh = read_inode_bitmap(sb, group);
if (!bitmap_bh)
goto fail;
ino = 0;
repeat_in_this_group:
ino = ext3_find_next_zero_bit((unsigned long *)
bitmap_bh->b_data, EXT3_INODES_PER_GROUP(sb), ino);
if (ino < EXT3_INODES_PER_GROUP(sb)) {
BUFFER_TRACE(bitmap_bh, "get_write_access");
err = ext3_journal_get_write_access(handle, bitmap_bh);
if (err)
goto fail;
if (!ext3_set_bit_atomic(sb_bgl_lock(sbi, group),
ino, bitmap_bh->b_data)) {
/* we won it */
BUFFER_TRACE(bitmap_bh,
"call ext3_journal_dirty_metadata");
err = ext3_journal_dirty_metadata(handle,
bitmap_bh);
if (err)
goto fail;
goto got;
}
/* we lost it */
journal_release_buffer(handle, bitmap_bh);
if (++ino < EXT3_INODES_PER_GROUP(sb))
goto repeat_in_this_group;
}
/*
* This case is possible in concurrent environment. It is very
* rare. We cannot repeat the find_group_xxx() call because
* that will simply return the same blockgroup, because the
* group descriptor metadata has not yet been updated.
* So we just go onto the next blockgroup.
*/
if (++group == sbi->s_groups_count)
//.........这里部分代码省略.........
示例9: find_group_orlov
static int find_group_orlov(struct super_block *sb, struct inode *parent)
{
int parent_group = EXT3_I(parent)->i_block_group;
struct ext3_sb_info *sbi = EXT3_SB(sb);
struct ext3_super_block *es = sbi->s_es;
int ngroups = sbi->s_groups_count;
int inodes_per_group = EXT3_INODES_PER_GROUP(sb);
int freei, avefreei;
int freeb, avefreeb;
int blocks_per_dir, ndirs;
int max_debt, max_dirs, min_blocks, min_inodes;
int group = -1, i;
struct ext3_group_desc *desc;
struct buffer_head *bh;
freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
avefreei = freei / ngroups;
freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
avefreeb = freeb / ngroups;
ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
if ((parent == sb->s_root->d_inode) ||
(EXT3_I(parent)->i_flags & EXT3_TOPDIR_FL)) {
int best_ndir = inodes_per_group;
int best_group = -1;
get_random_bytes(&group, sizeof(group));
parent_group = (unsigned)group % ngroups;
for (i = 0; i < ngroups; i++) {
group = (parent_group + i) % ngroups;
desc = ext3_get_group_desc (sb, group, &bh);
if (!desc || !desc->bg_free_inodes_count)
continue;
if (le16_to_cpu(desc->bg_used_dirs_count) >= best_ndir)
continue;
if (le16_to_cpu(desc->bg_free_inodes_count) < avefreei)
continue;
if (le16_to_cpu(desc->bg_free_blocks_count) < avefreeb)
continue;
best_group = group;
best_ndir = le16_to_cpu(desc->bg_used_dirs_count);
}
if (best_group >= 0)
return best_group;
goto fallback;
}
blocks_per_dir = (le32_to_cpu(es->s_blocks_count) - freeb) / ndirs;
max_dirs = ndirs / ngroups + inodes_per_group / 16;
min_inodes = avefreei - inodes_per_group / 4;
min_blocks = avefreeb - EXT3_BLOCKS_PER_GROUP(sb) / 4;
max_debt = EXT3_BLOCKS_PER_GROUP(sb) / max(blocks_per_dir, BLOCK_COST);
if (max_debt * INODE_COST > inodes_per_group)
max_debt = inodes_per_group / INODE_COST;
if (max_debt > 255)
max_debt = 255;
if (max_debt == 0)
max_debt = 1;
for (i = 0; i < ngroups; i++) {
group = (parent_group + i) % ngroups;
desc = ext3_get_group_desc (sb, group, &bh);
if (!desc || !desc->bg_free_inodes_count)
continue;
if (le16_to_cpu(desc->bg_used_dirs_count) >= max_dirs)
continue;
if (le16_to_cpu(desc->bg_free_inodes_count) < min_inodes)
continue;
if (le16_to_cpu(desc->bg_free_blocks_count) < min_blocks)
continue;
return group;
}
fallback:
for (i = 0; i < ngroups; i++) {
group = (parent_group + i) % ngroups;
desc = ext3_get_group_desc (sb, group, &bh);
if (!desc || !desc->bg_free_inodes_count)
continue;
if (le16_to_cpu(desc->bg_free_inodes_count) >= avefreei)
return group;
}
if (avefreei) {
/*
* The free-inodes counter is approximate, and for really small
* filesystems the above test can fail to find any blockgroups
*/
avefreei = 0;
goto fallback;
}
return -1;
}
示例10: ext3_ioctl
long ext3_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct inode *inode = filp->f_dentry->d_inode;
struct ext3_inode_info *ei = EXT3_I(inode);
unsigned int flags;
unsigned short rsv_window_size;
ext3_debug ("cmd = %u, arg = %lu\n", cmd, arg);
switch (cmd) {
case EXT3_IOC_GETFLAGS:
ext3_get_inode_flags(ei);
flags = ei->i_flags & EXT3_FL_USER_VISIBLE;
return put_user(flags, (int __user *) arg);
case EXT3_IOC_SETFLAGS: {
handle_t *handle = NULL;
int err;
struct ext3_iloc iloc;
unsigned int oldflags;
unsigned int jflag;
if (!inode_owner_or_capable(inode))
return -EACCES;
if (get_user(flags, (int __user *) arg))
return -EFAULT;
err = mnt_want_write_file(filp);
if (err)
return err;
flags = ext3_mask_flags(inode->i_mode, flags);
mutex_lock(&inode->i_mutex);
/* Is it quota file? Do not allow user to mess with it */
err = -EPERM;
if (IS_NOQUOTA(inode))
goto flags_out;
oldflags = ei->i_flags;
/* The JOURNAL_DATA flag is modifiable only by root */
jflag = flags & EXT3_JOURNAL_DATA_FL;
/*
* The IMMUTABLE and APPEND_ONLY flags can only be changed by
* the relevant capability.
*
* This test looks nicer. Thanks to Pauline Middelink
*/
if ((flags ^ oldflags) & (EXT3_APPEND_FL | EXT3_IMMUTABLE_FL)) {
if (!capable(CAP_LINUX_IMMUTABLE))
goto flags_out;
}
/*
* The JOURNAL_DATA flag can only be changed by
* the relevant capability.
*/
if ((jflag ^ oldflags) & (EXT3_JOURNAL_DATA_FL)) {
if (!capable(CAP_SYS_RESOURCE))
goto flags_out;
}
handle = ext3_journal_start(inode, 1);
if (IS_ERR(handle)) {
err = PTR_ERR(handle);
goto flags_out;
}
if (IS_SYNC(inode))
handle->h_sync = 1;
err = ext3_reserve_inode_write(handle, inode, &iloc);
if (err)
goto flags_err;
flags = flags & EXT3_FL_USER_MODIFIABLE;
flags |= oldflags & ~EXT3_FL_USER_MODIFIABLE;
ei->i_flags = flags;
ext3_set_inode_flags(inode);
inode->i_ctime = CURRENT_TIME_SEC;
err = ext3_mark_iloc_dirty(handle, inode, &iloc);
flags_err:
ext3_journal_stop(handle);
if (err)
goto flags_out;
if ((jflag ^ oldflags) & (EXT3_JOURNAL_DATA_FL))
err = ext3_change_inode_journal_flag(inode, jflag);
flags_out:
mutex_unlock(&inode->i_mutex);
mnt_drop_write_file(filp);
return err;
}
case EXT3_IOC_GETVERSION:
case EXT3_IOC_GETVERSION_OLD:
return put_user(inode->i_generation, (int __user *) arg);
case EXT3_IOC_SETVERSION:
//.........这里部分代码省略.........
示例11: ERR_PTR
/*
* There are two policies for allocating an inode. If the new inode is
* a directory, then a forward search is made for a block group with both
* free space and a low directory-to-inode ratio; if that fails, then of
* the groups with above-average free space, that group with the fewest
* directories already is chosen.
*
* For other inodes, search forward from the parent directory's block
* group to find a free inode.
*/
struct inode *ext3_new_inode(handle_t *handle, struct inode * dir,
const struct qstr *qstr, umode_t mode)
{
struct super_block *sb;
struct buffer_head *bitmap_bh = NULL;
struct buffer_head *bh2;
int group;
unsigned long ino = 0;
struct inode * inode;
struct ext3_group_desc * gdp = NULL;
struct ext3_super_block * es;
struct ext3_inode_info *ei;
struct ext3_sb_info *sbi;
int err = 0;
struct inode *ret;
int i;
/* Cannot create files in a deleted directory */
if (!dir || !dir->i_nlink)
return ERR_PTR(-EPERM);
sb = dir->i_sb;
trace_ext3_request_inode(dir, mode);
inode = new_inode(sb);
if (!inode)
return ERR_PTR(-ENOMEM);
ei = EXT3_I(inode);
sbi = EXT3_SB(sb);
es = sbi->s_es;
if (S_ISDIR(mode))
group = find_group_orlov(sb, dir);
else
group = find_group_other(sb, dir);
err = -ENOSPC;
if (group == -1)
goto out;
for (i = 0; i < sbi->s_groups_count; i++) {
err = -EIO;
gdp = ext3_get_group_desc(sb, group, &bh2);
if (!gdp)
goto fail;
brelse(bitmap_bh);
bitmap_bh = read_inode_bitmap(sb, group);
if (!bitmap_bh)
goto fail;
ino = 0;
repeat_in_this_group:
ino = ext3_find_next_zero_bit((unsigned long *)
bitmap_bh->b_data, EXT3_INODES_PER_GROUP(sb), ino);
if (ino < EXT3_INODES_PER_GROUP(sb)) {
BUFFER_TRACE(bitmap_bh, "get_write_access");
err = ext3_journal_get_write_access(handle, bitmap_bh);
if (err)
goto fail;
if (!ext3_set_bit_atomic(sb_bgl_lock(sbi, group),
ino, bitmap_bh->b_data)) {
/* we won it */
BUFFER_TRACE(bitmap_bh,
"call ext3_journal_dirty_metadata");
err = ext3_journal_dirty_metadata(handle,
bitmap_bh);
if (err)
goto fail;
goto got;
}
/* we lost it */
journal_release_buffer(handle, bitmap_bh);
if (++ino < EXT3_INODES_PER_GROUP(sb))
goto repeat_in_this_group;
}
/*
* This case is possible in concurrent environment. It is very
* rare. We cannot repeat the find_group_xxx() call because
* that will simply return the same blockgroup, because the
* group descriptor metadata has not yet been updated.
* So we just go onto the next blockgroup.
*/
if (++group == sbi->s_groups_count)
group = 0;
//.........这里部分代码省略.........
示例12: mlowerfs_ext3_write_record
int mlowerfs_ext3_write_record(struct file *file, void *buf, int bufsize,
loff_t *offs, int force_sync)
{
struct buffer_head *bh = NULL;
unsigned long block;
struct inode *inode = file->f_dentry->d_inode;
loff_t old_size = i_size_read(inode), offset = *offs;
loff_t new_size = i_size_read(inode);
handle_t *handle;
int err = 0, block_count = 0, blocksize, size, boffs;
/* Determine how many transaction credits are needed */
blocksize = 1 << inode->i_blkbits;
block_count = (*offs & (blocksize - 1)) + bufsize;
block_count = (block_count + blocksize - 1) >> inode->i_blkbits;
handle = _mlowerfs_ext3_journal_start(inode,
block_count * EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + 2);
if (IS_ERR(handle)) {
MERROR("can't start transaction for %d blocks (%d bytes)\n",
block_count * EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + 2, bufsize);
return PTR_ERR(handle);
}
while (bufsize > 0) {
if (bh != NULL)
brelse(bh);
block = offset >> inode->i_blkbits;
boffs = offset & (blocksize - 1);
size = min(blocksize - boffs, bufsize);
bh = _mlowerfs_ext3_bread(handle, inode, block, 1, &err);
if (!bh) {
MERROR("can't read/create block: %d\n", err);
goto out;
}
err = _mlowerfs_ext3_journal_get_write_access(handle, bh);
if (err) {
MERROR("journal_get_write_access() returned error %d\n",
err);
goto out;
}
MASSERT(bh->b_data + boffs + size <= bh->b_data + bh->b_size);
memcpy(bh->b_data + boffs, buf, size);
err = _mlowerfs_ext3_journal_dirty_metadata(handle, bh);
if (err) {
MERROR("journal_dirty_metadata() returned error %d\n",
err);
goto out;
}
if (offset + size > new_size)
new_size = offset + size;
offset += size;
bufsize -= size;
buf += size;
}
if (force_sync)
handle->h_sync = 1; /* recovery likes this */
out:
if (bh)
brelse(bh);
/* correct in-core and on-disk sizes */
if (new_size > i_size_read(inode)) {
lock_kernel();
if (new_size > i_size_read(inode))
i_size_write(inode, new_size);
if (i_size_read(inode) > EXT3_I(inode)->i_disksize)
EXT3_I(inode)->i_disksize = i_size_read(inode);
if (i_size_read(inode) > old_size)
mark_inode_dirty(inode);
unlock_kernel();
}
_mlowerfs_ext3_journal_stop(handle);
if (err == 0)
*offs = offset;
return err;
}
示例13: ext3_evict_inode
/*
* Called at inode eviction from icache
*/
void ext3_evict_inode (struct inode *inode)
{
struct ext3_inode_info *ei = EXT3_I(inode);
struct ext3_block_alloc_info *rsv;
handle_t *handle;
int want_delete = 0;
trace_ext3_evict_inode(inode);
if (!inode->i_nlink && !is_bad_inode(inode)) {
dquot_initialize(inode);
want_delete = 1;
}
/*
* When journalling data dirty buffers are tracked only in the journal.
* So although mm thinks everything is clean and ready for reaping the
* inode might still have some pages to write in the running
* transaction or waiting to be checkpointed. Thus calling
* journal_invalidatepage() (via truncate_inode_pages()) to discard
* these buffers can cause data loss. Also even if we did not discard
* these buffers, we would have no way to find them after the inode
* is reaped and thus user could see stale data if he tries to read
* them before the transaction is checkpointed. So be careful and
* force everything to disk here... We use ei->i_datasync_tid to
* store the newest transaction containing inode's data.
*
* Note that directories do not have this problem because they don't
* use page cache.
*
* The s_journal check handles the case when ext3_get_journal() fails
* and puts the journal inode.
*/
if (inode->i_nlink && ext3_should_journal_data(inode) &&
EXT3_SB(inode->i_sb)->s_journal &&
(S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
inode->i_ino != EXT3_JOURNAL_INO) {
tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
log_start_commit(journal, commit_tid);
log_wait_commit(journal, commit_tid);
filemap_write_and_wait(&inode->i_data);
}
truncate_inode_pages(&inode->i_data, 0);
ext3_discard_reservation(inode);
rsv = ei->i_block_alloc_info;
ei->i_block_alloc_info = NULL;
if (unlikely(rsv))
kfree(rsv);
if (!want_delete)
goto no_delete;
handle = start_transaction(inode);
if (IS_ERR(handle)) {
/*
* If we're going to skip the normal cleanup, we still need to
* make sure that the in-core orphan linked list is properly
* cleaned up.
*/
ext3_orphan_del(NULL, inode);
goto no_delete;
}
if (IS_SYNC(inode))
handle->h_sync = 1;
inode->i_size = 0;
if (inode->i_blocks)
ext3_truncate(inode);
/*
* Kill off the orphan record created when the inode lost the last
* link. Note that ext3_orphan_del() has to be able to cope with the
* deletion of a non-existent orphan - ext3_truncate() could
* have removed the record.
*/
ext3_orphan_del(handle, inode);
ei->i_dtime = get_seconds();
/*
* One subtle ordering requirement: if anything has gone wrong
* (transaction abort, IO errors, whatever), then we can still
* do these next steps (the fs will already have been marked as
* having errors), but we can't free the inode if the mark_dirty
* fails.
*/
if (ext3_mark_inode_dirty(handle, inode)) {
/* If that failed, just dquot_drop() and be done with that */
dquot_drop(inode);
clear_inode(inode);
} else {
ext3_xattr_delete_inode(handle, inode);
dquot_free_inode(inode);
dquot_drop(inode);
clear_inode(inode);
ext3_free_inode(handle, inode);
}
//.........这里部分代码省略.........
示例14: ext3_do_set_acl
/*
* inode->i_sem: down, or inode is just being initialized
* BKL: held
*/
static int
ext3_do_set_acl(handle_t *handle, struct inode *inode, int type,
struct posix_acl *acl)
{
struct ext3_inode_info *ei = EXT3_I(inode);
int name_index;
void *value = NULL;
size_t size;
int error;
if (S_ISLNK(inode->i_mode))
return -ENODATA;
switch(type) {
case ACL_TYPE_ACCESS:
name_index = EXT3_XATTR_INDEX_POSIX_ACL_ACCESS;
if (acl) {
mode_t mode = inode->i_mode;
error = posix_acl_equiv_mode(acl, &mode);
if (error < 0)
return error;
else {
inode->i_mode = mode;
ext3_mark_inode_dirty(handle, inode);
if (error == 0)
acl = NULL;
}
}
break;
case ACL_TYPE_DEFAULT:
name_index = EXT3_XATTR_INDEX_POSIX_ACL_DEFAULT;
if (!S_ISDIR(inode->i_mode))
return acl ? -EACCES : 0;
break;
default:
return -EINVAL;
}
if (acl) {
if (acl->a_count > EXT3_ACL_MAX_ENTRIES)
return -EINVAL;
value = ext3_acl_to_disk(acl, &size);
if (IS_ERR(value))
return (int)PTR_ERR(value);
}
error = ext3_xattr_set_handle(handle, inode, name_index, "",
value, size, 0);
if (value)
kfree(value);
if (!error) {
switch(type) {
case ACL_TYPE_ACCESS:
if (ei->i_acl != EXT3_ACL_NOT_CACHED)
posix_acl_release(ei->i_acl);
ei->i_acl = posix_acl_dup(acl);
break;
case ACL_TYPE_DEFAULT:
if (ei->i_default_acl != EXT3_ACL_NOT_CACHED)
posix_acl_release(ei->i_default_acl);
ei->i_default_acl = posix_acl_dup(acl);
break;
}
}
return error;
}
示例15: ext3_ioctl
int ext3_ioctl (struct inode * inode, struct file * filp, unsigned int cmd,
unsigned long arg)
{
struct ext3_inode_info *ei = EXT3_I(inode);
unsigned int flags;
unsigned short rsv_window_size;
ext3_debug ("cmd = %u, arg = %lu\n", cmd, arg);
switch (cmd) {
case EXT3_IOC_GETFLAGS:
flags = ei->i_flags & EXT3_FL_USER_VISIBLE;
return put_user(flags, (int __user *) arg);
case EXT3_IOC_SETFLAGS: {
handle_t *handle = NULL;
int err;
struct ext3_iloc iloc;
unsigned int oldflags;
unsigned int jflag;
if (IS_RDONLY(inode))
return -EROFS;
if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
return -EACCES;
if (get_user(flags, (int __user *) arg))
return -EFAULT;
if (!S_ISDIR(inode->i_mode))
flags &= ~EXT3_DIRSYNC_FL;
mutex_lock(&inode->i_mutex);
oldflags = ei->i_flags;
/* The JOURNAL_DATA flag is modifiable only by root */
jflag = flags & EXT3_JOURNAL_DATA_FL;
/*
* The IMMUTABLE and APPEND_ONLY flags can only be changed by
* the relevant capability.
*
* This test looks nicer. Thanks to Pauline Middelink
*/
if ((flags ^ oldflags) & (EXT3_APPEND_FL | EXT3_IMMUTABLE_FL)) {
if (!capable(CAP_LINUX_IMMUTABLE)) {
mutex_unlock(&inode->i_mutex);
return -EPERM;
}
}
/*
* The JOURNAL_DATA flag can only be changed by
* the relevant capability.
*/
if ((jflag ^ oldflags) & (EXT3_JOURNAL_DATA_FL)) {
if (!capable(CAP_SYS_RESOURCE)) {
mutex_unlock(&inode->i_mutex);
return -EPERM;
}
}
handle = ext3_journal_start(inode, 1);
if (IS_ERR(handle)) {
mutex_unlock(&inode->i_mutex);
return PTR_ERR(handle);
}
if (IS_SYNC(inode))
handle->h_sync = 1;
err = ext3_reserve_inode_write(handle, inode, &iloc);
if (err)
goto flags_err;
flags = flags & EXT3_FL_USER_MODIFIABLE;
flags |= oldflags & ~EXT3_FL_USER_MODIFIABLE;
ei->i_flags = flags;
ext3_set_inode_flags(inode);
inode->i_ctime = CURRENT_TIME_SEC;
err = ext3_mark_iloc_dirty(handle, inode, &iloc);
flags_err:
ext3_journal_stop(handle);
if (err) {
mutex_unlock(&inode->i_mutex);
return err;
}
if ((jflag ^ oldflags) & (EXT3_JOURNAL_DATA_FL))
err = ext3_change_inode_journal_flag(inode, jflag);
mutex_unlock(&inode->i_mutex);
return err;
}
case EXT3_IOC_GETVERSION:
case EXT3_IOC_GETVERSION_OLD:
return put_user(inode->i_generation, (int __user *) arg);
case EXT3_IOC_SETVERSION:
case EXT3_IOC_SETVERSION_OLD: {
handle_t *handle;
//.........这里部分代码省略.........