本文整理汇总了C++中DEV_CFG函数的典型用法代码示例。如果您正苦于以下问题:C++ DEV_CFG函数的具体用法?C++ DEV_CFG怎么用?C++ DEV_CFG使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了DEV_CFG函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: uart_nrf5_init
/**
* @brief Initialize UART channel
*
* This routine is called to reset the chip in a quiescent state.
* It is assumed that this function is called only once per UART.
*
* @param dev UART device struct
*
* @return 0 on success
*/
static int uart_nrf5_init(struct device *dev)
{
volatile struct _uart *uart = UART_STRUCT(dev);
struct device *gpio_dev;
gpio_dev = device_get_binding(CONFIG_GPIO_NRF5_P0_DEV_NAME);
(void) gpio_pin_configure(gpio_dev,
CONFIG_UART_NRF5_GPIO_TX_PIN,
(GPIO_DIR_OUT | GPIO_PUD_PULL_UP));
(void) gpio_pin_configure(gpio_dev,
CONFIG_UART_NRF5_GPIO_RX_PIN,
(GPIO_DIR_IN));
uart->PSELTXD = CONFIG_UART_NRF5_GPIO_TX_PIN;
uart->PSELRXD = CONFIG_UART_NRF5_GPIO_RX_PIN;
#ifdef CONFIG_UART_NRF5_FLOW_CONTROL
(void) gpio_pin_configure(gpio_dev,
CONFIG_UART_NRF5_GPIO_RTS_PIN,
(GPIO_DIR_OUT | GPIO_PUD_PULL_UP));
(void) gpio_pin_configure(gpio_dev,
CONFIG_UART_NRF5_GPIO_CTS_PIN,
(GPIO_DIR_IN));
uart->PSELRTS = CONFIG_UART_NRF5_GPIO_RTS_PIN;
uart->PSELCTS = CONFIG_UART_NRF5_GPIO_CTS_PIN;
uart->CONFIG = (UART_CONFIG_HWFC_Enabled << UART_CONFIG_HWFC_Pos);
#endif /* CONFIG_UART_NRF5_FLOW_CONTROL */
DEV_DATA(dev)->baud_rate = CONFIG_UART_NRF5_BAUD_RATE;
DEV_CFG(dev)->sys_clk_freq = CONFIG_UART_NRF5_CLK_FREQ;
/* Set baud rate */
baudrate_set(dev, DEV_DATA(dev)->baud_rate,
DEV_CFG(dev)->sys_clk_freq);
/* Enable receiver and transmitter */
uart->ENABLE = (UART_ENABLE_ENABLE_Enabled << UART_ENABLE_ENABLE_Pos);
uart->EVENTS_TXDRDY = 0;
uart->EVENTS_RXDRDY = 0;
uart->TASKS_STARTTX = 1;
uart->TASKS_STARTRX = 1;
dev->driver_api = &uart_nrf5_driver_api;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
DEV_CFG(dev)->irq_config_func(dev);
#endif
return 0;
}
示例2: adc_sam_initialize
static int adc_sam_initialize(struct device *dev)
{
const struct adc_sam_dev_cfg *dev_cfg = DEV_CFG(dev);
struct adc_sam_dev_data *const dev_data = DEV_DATA(dev);
/* Initialize semaphores */
k_sem_init(&dev_data->sem_meas, 0, 1);
k_sem_init(&dev_data->mutex_thread, 1, 1);
/* Configure interrupts */
dev_cfg->irq_config();
/* Enable module's clock */
soc_pmc_peripheral_enable(dev_cfg->periph_id);
/* Configure ADC */
adc_sam_configure(dev);
/* Enable module interrupt */
irq_enable(dev_cfg->irq_id);
SYS_LOG_INF("Device %s initialized", DEV_NAME(dev));
return 0;
}
示例3: adc_sam_configure
static void adc_sam_configure(struct device *dev)
{
const struct adc_sam_dev_cfg *dev_cfg = DEV_CFG(dev);
Afec *const afec = dev_cfg->regs;
/* Reset the AFEC */
afec->AFEC_CR = AFEC_CR_SWRST;
afec->AFEC_MR = AFEC_MR_TRGEN_DIS
| AFEC_MR_SLEEP_NORMAL
| AFEC_MR_FWUP_OFF
| AFEC_MR_FREERUN_OFF
| AFEC_MR_PRESCAL(CONF_ADC_PRESCALER)
| AFEC_MR_STARTUP_SUT96
| AFEC_MR_ONE
| AFEC_MR_USEQ_NUM_ORDER;
/* Set all channels CM voltage to Vrefp/2 (512) */
for (int i = 0; i < ADC_CHANNELS; i++) {
afec->AFEC_CSELR = i;
afec->AFEC_COCR = 512;
}
/* Enable PGA and Current Bias */
afec->AFEC_ACR = AFEC_ACR_PGA0EN
| AFEC_ACR_PGA1EN
| AFEC_ACR_IBCTL(1);
}
示例4: stm32_i2c_configure_timing
int stm32_i2c_configure_timing(struct device *dev, u32_t clock)
{
const struct i2c_stm32_config *cfg = DEV_CFG(dev);
struct i2c_stm32_data *data = DEV_DATA(dev);
I2C_TypeDef *i2c = cfg->i2c;
u32_t i2c_hold_time_min, i2c_setup_time_min;
u32_t i2c_h_min_time, i2c_l_min_time;
u32_t presc = 1;
u32_t timing = 0;
switch (I2C_SPEED_GET(data->dev_config)) {
case I2C_SPEED_STANDARD:
i2c_h_min_time = 4000;
i2c_l_min_time = 4700;
i2c_hold_time_min = 500;
i2c_setup_time_min = 1250;
break;
case I2C_SPEED_FAST:
i2c_h_min_time = 600;
i2c_l_min_time = 1300;
i2c_hold_time_min = 375;
i2c_setup_time_min = 500;
break;
default:
return -EINVAL;
}
/* Calculate period until prescaler matches */
do {
u32_t t_presc = clock / presc;
u32_t ns_presc = NSEC_PER_SEC / t_presc;
u32_t sclh = i2c_h_min_time / ns_presc;
u32_t scll = i2c_l_min_time / ns_presc;
u32_t sdadel = i2c_hold_time_min / ns_presc;
u32_t scldel = i2c_setup_time_min / ns_presc;
if ((sclh - 1) > 255 || (scll - 1) > 255) {
++presc;
continue;
}
if (sdadel > 15 || (scldel - 1) > 15) {
++presc;
continue;
}
timing = __LL_I2C_CONVERT_TIMINGS(presc - 1,
scldel - 1, sdadel, sclh - 1, scll - 1);
break;
} while (presc < 16);
if (presc >= 16) {
SYS_LOG_DBG("I2C:failed to find prescaler value");
return -EINVAL;
}
LL_I2C_SetTiming(i2c, timing);
return 0;
}
示例5: dw_dma_isr
static void dw_dma_isr(void *arg)
{
struct device *dev = (struct device *)arg;
const struct dw_dma_dev_cfg *const dev_cfg = DEV_CFG(dev);
struct dw_dma_dev_data *const dev_data = DEV_DATA(dev);
struct dma_chan_data *chan_data;
u32_t status_tfr = 0;
u32_t status_block = 0;
u32_t status_err = 0;
u32_t status_intr;
u32_t channel;
status_intr = dw_read(dev_cfg->base, DW_INTR_STATUS);
if (!status_intr) {
SYS_LOG_ERR("status_intr = %d", status_intr);
}
/* get the source of our IRQ. */
status_block = dw_read(dev_cfg->base, DW_STATUS_BLOCK);
status_tfr = dw_read(dev_cfg->base, DW_STATUS_TFR);
/* TODO: handle errors, just clear them atm */
status_err = dw_read(dev_cfg->base, DW_STATUS_ERR);
if (status_err) {
SYS_LOG_ERR("status_err = %d\n", status_err);
dw_write(dev_cfg->base, DW_CLEAR_ERR, status_err);
}
/* clear interrupts */
dw_write(dev_cfg->base, DW_CLEAR_BLOCK, status_block);
dw_write(dev_cfg->base, DW_CLEAR_TFR, status_tfr);
/* Dispatch ISRs for channels depending upon the bit set */
while (status_block) {
channel = find_lsb_set(status_block) - 1;
status_block &= ~(1 << channel);
chan_data = &dev_data->chan[channel];
if (chan_data->dma_blkcallback) {
/* Ensure the linked list (chan_data->lli) is
* freed in the user callback function once
* all the blocks are transferred.
*/
chan_data->dma_blkcallback(dev, channel, 0);
}
}
while (status_tfr) {
channel = find_lsb_set(status_tfr) - 1;
status_tfr &= ~(1 << channel);
chan_data = &dev_data->chan[channel];
k_free(chan_data->lli);
chan_data->lli = NULL;
if (chan_data->dma_tfrcallback) {
chan_data->dma_tfrcallback(dev, channel, 0);
}
}
}
示例6: uart_k20_init
/**
* @brief Initialize UART channel
*
* This routine is called to reset the chip in a quiescent state.
* It is assumed that this function is called only once per UART.
*
* @param dev UART device struct
*
* @return DEV_OK
*/
static int uart_k20_init(struct device *dev)
{
int old_level; /* old interrupt lock level */
union C1 c1; /* UART C1 register value */
union C2 c2; /* UART C2 register value */
volatile struct K20_UART *uart = UART_STRUCT(dev);
struct uart_device_config * const dev_cfg = DEV_CFG(dev);
struct uart_k20_dev_data_t * const dev_data = DEV_DATA(dev);
/* disable interrupts */
old_level = irq_lock();
_uart_k20_baud_rate_set(uart, dev_cfg->sys_clk_freq,
dev_data->baud_rate);
/* 1 start bit, 8 data bits, no parity, 1 stop bit */
c1.value = 0;
uart->c1 = c1;
/* enable Rx and Tx with interrupts disabled */
c2.value = 0;
c2.field.rx_enable = 1;
c2.field.tx_enable = 1;
uart->c2 = c2;
/* restore interrupt state */
irq_unlock(old_level);
dev->driver_api = &uart_k20_driver_api;
return DEV_OK;
}
示例7: sam_xdmac_isr
static void sam_xdmac_isr(void *arg)
{
struct device *dev = (struct device *)arg;
const struct sam_xdmac_dev_cfg *const dev_cfg = DEV_CFG(dev);
struct sam_xdmac_dev_data *const dev_data = DEV_DATA(dev);
Xdmac *const xdmac = dev_cfg->regs;
struct sam_xdmac_channel_cfg *channel_cfg;
u32_t isr_status;
u32_t err;
/* Get global interrupt status */
isr_status = xdmac->XDMAC_GIS;
for (int channel = 0; channel < DMA_CHANNELS_NO; channel++) {
if (!(isr_status & (1 << channel))) {
continue;
}
channel_cfg = &dev_data->dma_channels[channel];
/* Get channel errors */
err = xdmac->XDMAC_CHID[channel].XDMAC_CIS & XDMAC_INT_ERR;
/* Execute callback */
if (channel_cfg->callback) {
channel_cfg->callback(dev, channel, err);
}
}
}
示例8: i2s_stm32_initialize
static int i2s_stm32_initialize(struct device *dev)
{
const struct i2s_stm32_cfg *cfg = DEV_CFG(dev);
struct i2s_stm32_data *const dev_data = DEV_DATA(dev);
int ret, i;
/* Enable I2S clock propagation */
ret = i2s_stm32_enable_clock(dev);
if (ret < 0) {
LOG_ERR("%s: clock enabling failed: %d", __func__, ret);
return -EIO;
}
cfg->irq_config(dev);
k_sem_init(&dev_data->rx.sem, 0, CONFIG_I2S_STM32_RX_BLOCK_COUNT);
k_sem_init(&dev_data->tx.sem, CONFIG_I2S_STM32_TX_BLOCK_COUNT,
CONFIG_I2S_STM32_TX_BLOCK_COUNT);
for (i = 0; i < STM32_DMA_NUM_CHANNELS; i++) {
active_dma_rx_channel[i] = NULL;
active_dma_tx_channel[i] = NULL;
}
/* Get the binding to the DMA device */
dev_data->dev_dma = device_get_binding(dev_data->dma_name);
if (!dev_data->dev_dma) {
LOG_ERR("%s device not found", dev_data->dma_name);
return -ENODEV;
}
LOG_INF("%s inited", dev->config->name);
return 0;
}
示例9: usart_sam_irq_is_pending
static int usart_sam_irq_is_pending(struct device *dev)
{
volatile Usart * const usart = DEV_CFG(dev)->regs;
return ((usart->US_CSR & US_CSR_TXRDY)
| (usart->US_CSR & US_CSR_RXRDY));
}
示例10: i2c_mcux_configure
static int i2c_mcux_configure(struct device *dev, u32_t dev_config_raw)
{
I2C_Type *base = DEV_BASE(dev);
const struct i2c_mcux_config *config = DEV_CFG(dev);
union dev_config dev_config = (union dev_config)dev_config_raw;
u32_t clock_freq;
u32_t baudrate;
if (!dev_config.bits.is_master_device) {
return -EINVAL;
}
if (dev_config.bits.use_10_bit_addr) {
return -EINVAL;
}
switch (dev_config.bits.speed) {
case I2C_SPEED_STANDARD:
baudrate = KHZ(100);
break;
case I2C_SPEED_FAST:
baudrate = MHZ(1);
break;
default:
return -EINVAL;
}
clock_freq = CLOCK_GetFreq(config->clock_source);
I2C_MasterSetBaudRate(base, baudrate, clock_freq);
return 0;
}
示例11: stm32_i2c_msg_read
int stm32_i2c_msg_read(struct device *dev, struct i2c_msg *msg,
u8_t *next_msg_flags, uint16_t slave)
{
const struct i2c_stm32_config *cfg = DEV_CFG(dev);
I2C_TypeDef *i2c = cfg->i2c;
unsigned int len = 0;
u8_t *buf = msg->buf;
msg_init(dev, msg, next_msg_flags, slave, LL_I2C_REQUEST_READ);
len = msg->len;
while (len) {
while (!LL_I2C_IsActiveFlag_RXNE(i2c)) {
;
}
*buf = LL_I2C_ReceiveData8(i2c);
buf++;
len--;
}
msg_done(dev, msg->flags);
return 0;
}
示例12: i2c_mcux_init
static int i2c_mcux_init(struct device *dev)
{
I2C_Type *base = DEV_BASE(dev);
const struct i2c_mcux_config *config = DEV_CFG(dev);
struct i2c_mcux_data *data = DEV_DATA(dev);
u32_t clock_freq, bitrate_cfg;
i2c_master_config_t master_config;
int error;
k_sem_init(&data->device_sync_sem, 0, UINT_MAX);
clock_freq = CLOCK_GetFreq(config->clock_source);
I2C_MasterGetDefaultConfig(&master_config);
I2C_MasterInit(base, &master_config, clock_freq);
I2C_MasterTransferCreateHandle(base, &data->handle,
i2c_mcux_master_transfer_callback, dev);
bitrate_cfg = _i2c_map_dt_bitrate(config->bitrate);
error = i2c_mcux_configure(dev, I2C_MODE_MASTER | bitrate_cfg);
if (error) {
return error;
}
config->irq_config_func(dev);
return 0;
}
示例13: i2c_mcux_configure
static int i2c_mcux_configure(struct device *dev, u32_t dev_config_raw)
{
I2C_Type *base = DEV_BASE(dev);
const struct i2c_mcux_config *config = DEV_CFG(dev);
u32_t clock_freq;
u32_t baudrate;
if (!(I2C_MODE_MASTER & dev_config_raw)) {
return -EINVAL;
}
if (I2C_ADDR_10_BITS & dev_config_raw) {
return -EINVAL;
}
switch (I2C_SPEED_GET(dev_config_raw)) {
case I2C_SPEED_STANDARD:
baudrate = KHZ(100);
break;
case I2C_SPEED_FAST:
baudrate = MHZ(1);
break;
default:
return -EINVAL;
}
clock_freq = CLOCK_GetFreq(config->clock_source);
I2C_MasterSetBaudRate(base, baudrate, clock_freq);
return 0;
}
示例14: stm32_i2c_error
static int stm32_i2c_error(struct device *dev)
{
const struct i2c_stm32_config *cfg = DEV_CFG(dev);
struct i2c_stm32_data *data = DEV_DATA(dev);
I2C_TypeDef *i2c = cfg->i2c;
#if defined(CONFIG_I2C_SLAVE)
if (data->slave_attached && !data->master_active) {
/* No need for a slave error function right now. */
return 0;
}
#endif
if (LL_I2C_IsActiveFlag_ARLO(i2c)) {
LL_I2C_ClearFlag_ARLO(i2c);
data->current.is_arlo = 1;
goto end;
}
if (LL_I2C_IsActiveFlag_BERR(i2c)) {
LL_I2C_ClearFlag_BERR(i2c);
data->current.is_err = 1;
goto end;
}
return 0;
end:
stm32_i2c_master_mode_end(dev);
return -EIO;
}
示例15: i2c_stm32_slave_unregister
int i2c_stm32_slave_unregister(struct device *dev,
struct i2c_slave_config *config)
{
const struct i2c_stm32_config *cfg = DEV_CFG(dev);
struct i2c_stm32_data *data = DEV_DATA(dev);
I2C_TypeDef *i2c = cfg->i2c;
if (!data->slave_attached) {
return -EINVAL;
}
if (data->master_active) {
return -EBUSY;
}
LL_I2C_DisableOwnAddress1(i2c);
LL_I2C_DisableIT_ADDR(i2c);
stm32_i2c_disable_transfer_interrupts(dev);
LL_I2C_ClearFlag_NACK(i2c);
LL_I2C_ClearFlag_STOP(i2c);
LL_I2C_ClearFlag_ADDR(i2c);
LL_I2C_Disable(i2c);
SYS_LOG_DBG("i2c: slave unregistered");
return 0;
}