本文整理汇总了C++中DESCALE函数的典型用法代码示例。如果您正苦于以下问题:C++ DESCALE函数的具体用法?C++ DESCALE怎么用?C++ DESCALE使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了DESCALE函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
int main(int argc, char *argv[]) {
printf("Linear Regression\n");
printf("=================\n\n");
// Check for a filename
if (argc == 2) {
FILE *input = fopen(argv[1], "r");
if (input == NULL) {
perror(argv[1]);
exit(1);
} else {
DataSet theData = load_data(input);
fclose(input);
LinRegResult linReg = linear_regression(theData);
clean(theData);
printf("\nSlope \tm = %15.6e\n", DESCALE(linReg.m)); // print slope
printf("y-intercept\tb = %15.6e\n", DESCALE(linReg.b)); // print y-intercept
printf("Correlation\tr = %15.6e\n", DESCALE(linReg.r)); // print correlation
}
} else {
printf("ERROR: Must enter filename after ./linReg\n");
}
return 0;
}
示例2: dotProd
int dotProd(int *a, int *b, int n) {
double dotProd = 0;
int result = 0;
int i;
for (i = 0; i < n; i++) {
dotProd += DESCALE(a[i]) * DESCALE(b[i]);
}
result = dotProd * SCALE;
return result;
}
示例3: ff_fdct248_islow
ff_fdct248_islow (DCTELEM * data)
{
int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
int_fast32_t tmp10, tmp11, tmp12, tmp13;
int_fast32_t z1;
DCTELEM *dataptr;
int ctr;
row_fdct(data);
/* Pass 2: process columns.
* We remove the PASS1_BITS scaling, but leave the results scaled up
* by an overall factor of 8.
*/
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--)
{
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
tmp10 = tmp0 + tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
tmp13 = tmp0 - tmp3;
dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
CONST_BITS+PASS1_BITS);
tmp10 = tmp4 + tmp7;
tmp11 = tmp5 + tmp6;
tmp12 = tmp5 - tmp6;
tmp13 = tmp4 - tmp7;
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
CONST_BITS+PASS1_BITS);
dataptr++; /* advance pointer to next column */
}
}
示例4: IDCT
/* Inverse 2-D Discrete Cosine Transform. */
void IDCT(const FBlock * input, PBlock * output)
{
int Y[64];
int k, l;
/* Pass 1: process rows. */
for (k = 0; k < 8; k++) {
/* Prescale k-th row: */
for (l = 0; l < 8; l++)
Y(k, l) = SCALE(input->block[k][l], S_BITS);
/* 1-D IDCT on k-th row: */
idct_1d(&Y(k, 0));
/* Result Y is scaled up by factor sqrt(8)*2^S_BITS. */
}
/* Pass 2: process columns. */
for (l = 0; l < 8; l++) {
int Yc[8];
for (k = 0; k < 8; k++)
Yc[k] = Y(k, l);
/* 1-D IDCT on l-th column: */
idct_1d(Yc);
/* Result is once more scaled up by a factor sqrt(8). */
for (k = 0; k < 8; k++) {
int r = 128 + DESCALE(Yc[k], S_BITS + 3); /* includes level shift */
/* Clip to 8 bits unsigned: */
r = r > 0 ? (r < 255 ? r : 255) : 0;
X(k, l) = r;
}
}
}
示例5: idct1
static void idct1(int *block)
{
int i, val;
val = RANGE(DESCALE(block[0], PASS1_BITS+3));
for(i=0;i<DCTSIZE2;i++)
block[i]=val;
}
示例6: linear_regression
LinRegResult linear_regression(DataSet theData) {
LinRegResult result;
int n = theData.n; // number of data points
double sumx = DESCALE(sum(theData.x, n)); // sum of x
double sumxx = DESCALE(dotProd(theData.x, theData.x, n)); // sum of each x squared
double sumy = DESCALE(sum(theData.y, n)); // sum of y
double sumyy = DESCALE(dotProd(theData.y, theData.y, n)); // sum of each y squared
double sumxy = DESCALE(dotProd(theData.x, theData.y, n)); // sum of each x * y
double m, b, r;
// Compute least-squares best fit straight line
m = (n * sumxy - sumx * sumy) / (n * sumxx - sqr(sumx)); // slope
b = (sumy * sumxx - (sumx * sumxy)) / (n * sumxx - sqr(sumx)); // y-intercept
r = (sumxy - sumx * sumy / n) / sqrt((sumxx - sqr(sumx) / n) * (sumyy - sqr(sumy)/ n)); // correlation
result.m = m * SCALE;
result.b = b * SCALE;
result.r = r * SCALE;
return result;
}
示例7: JPEG_SWIDCT_1X1
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 1x1 output block.
*/
void JPEG_SWIDCT_1X1(int16 *coef_block, uint8 *output_buf, const int32 *quantptr)
{
int32 dcval;
/* We hardly need an inverse DCT routine for this: just take the
* average pixel value, which is one-eighth of the DC coefficient.
*/
dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
dcval = (int32) DESCALE((int32) dcval, 3);
output_buf[0]/*[0]*/ = s_pClip_table[dcval+128];
}
示例8: idct
static void idct(int* tempptr, const jpgd_block_t* dataptr)
{
// will be optimized at compile time to either an array access, or 0
#define ACCESS_COL(x) (((x) < NONZERO_COLS) ? (int)dataptr[x] : 0)
const int z2 = ACCESS_COL(2);
const int z3 = ACCESS_COL(6);
const int z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
const int tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
const int tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
const int tmp0 = (ACCESS_COL(0) + ACCESS_COL(4)) << CONST_BITS;
const int tmp1 = (ACCESS_COL(0) - ACCESS_COL(4)) << CONST_BITS;
const int tmp10 = tmp0 + tmp3;
const int tmp13 = tmp0 - tmp3;
const int tmp11 = tmp1 + tmp2;
const int tmp12 = tmp1 - tmp2;
const int atmp0 = ACCESS_COL(7);
const int atmp1 = ACCESS_COL(5);
const int atmp2 = ACCESS_COL(3);
const int atmp3 = ACCESS_COL(1);
const int bz1 = atmp0 + atmp3;
const int bz2 = atmp1 + atmp2;
const int bz3 = atmp0 + atmp2;
const int bz4 = atmp1 + atmp3;
const int bz5 = MULTIPLY(bz3 + bz4, FIX_1_175875602);
const int az1 = MULTIPLY(bz1, - FIX_0_899976223);
const int az2 = MULTIPLY(bz2, - FIX_2_562915447);
const int az3 = MULTIPLY(bz3, - FIX_1_961570560) + bz5;
const int az4 = MULTIPLY(bz4, - FIX_0_390180644) + bz5;
const int btmp0 = MULTIPLY(atmp0, FIX_0_298631336) + az1 + az3;
const int btmp1 = MULTIPLY(atmp1, FIX_2_053119869) + az2 + az4;
const int btmp2 = MULTIPLY(atmp2, FIX_3_072711026) + az2 + az3;
const int btmp3 = MULTIPLY(atmp3, FIX_1_501321110) + az1 + az4;
tempptr[0] = DESCALE(tmp10 + btmp3, CONST_BITS-PASS1_BITS);
tempptr[7] = DESCALE(tmp10 - btmp3, CONST_BITS-PASS1_BITS);
tempptr[1] = DESCALE(tmp11 + btmp2, CONST_BITS-PASS1_BITS);
tempptr[6] = DESCALE(tmp11 - btmp2, CONST_BITS-PASS1_BITS);
tempptr[2] = DESCALE(tmp12 + btmp1, CONST_BITS-PASS1_BITS);
tempptr[5] = DESCALE(tmp12 - btmp1, CONST_BITS-PASS1_BITS);
tempptr[3] = DESCALE(tmp13 + btmp0, CONST_BITS-PASS1_BITS);
tempptr[4] = DESCALE(tmp13 - btmp0, CONST_BITS-PASS1_BITS);
}
示例9: dct_1d
static void dct_1d(dct_data_t *src, dct_data_t *dst)
{
unsigned int k, n;
int tmp;
const dct_data_t dct_coeff_table[DCT_SIZE][DCT_SIZE] = {
#include "dct_coeff_table.txt"
};
for (k = 0; k < DCT_SIZE; k++) {
for(n = 0, tmp = 0; n < DCT_SIZE; n++) {
int coeff = (int)dct_coeff_table[k][n];
tmp += src[n] * coeff;
}
dst[k] = DESCALE(tmp, CONST_BITS);
}
}
示例10: openexif_jpeg_idct_1x1
openexif_jpeg_idct_1x1 (oe_j_decompress_ptr cinfo, openexif_jpeg_component_info * compptr,
OE_JCOEFPTR coef_block,
OE_JSAMPARRAY output_buf, OE_JDIMENSION output_col)
{
int dcval;
ISLOW_MULT_TYPE * quantptr;
OE_JSAMPLE *range_limit = IDCT_range_limit(cinfo);
SHIFT_TEMPS
/* We hardly need an inverse DCT routine for this: just take the
* average pixel value, which is one-eighth of the DC coefficient.
*/
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
dcval = (int) DESCALE((INT32) dcval, 3);
output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
}
示例11: start_pass_fdctmgr
METHODDEF void
start_pass_fdctmgr (j_compress_ptr cinfo)
{
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
int ci, qtblno, i;
jpeg_component_info *compptr;
JQUANT_TBL * qtbl;
#ifdef DCT_ISLOW_SUPPORTED
DCTELEM * dtbl;
#endif
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
qtblno = compptr->quant_tbl_no;
/* Make sure specified quantization table is present */
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
qtbl = cinfo->quant_tbl_ptrs[qtblno];
/* Compute divisors for this quant table */
/* We may do this more than once for same table, but it's not a big deal */
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
/* For LL&M IDCT method, divisors are equal to raw quantization
* coefficients multiplied by 8 (to counteract scaling).
*/
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
dtbl[i] = ((DCTELEM) qtbl->quantval[jpeg_zigzag_order[i]]) << 3;
}
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
{
/* For AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
*/
#define CONST_BITS 14
static const INT16 aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits: in natural order */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
SHIFT_TEMPS
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
dtbl[i] = (DCTELEM)
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[jpeg_zigzag_order[i]],
(INT32) aanscales[i]),
CONST_BITS-3);
}
}
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
{
/* For float AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
* What's actually stored is 1/divisor so that the inner loop can
* use a multiplication rather than a division.
*/
FAST_FLOAT * fdtbl;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
if (fdct->float_divisors[qtblno] == NULL) {
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(FAST_FLOAT));
}
fdtbl = fdct->float_divisors[qtblno];
//.........这里部分代码省略.........
示例12: row_fdct
static av_always_inline void row_fdct(DCTELEM * data)
{
int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
int_fast32_t tmp10, tmp11, tmp12, tmp13;
int_fast32_t z1, z2, z3, z4, z5;
DCTELEM *dataptr;
int ctr;
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--)
{
tmp0 = dataptr[0] + dataptr[7];
tmp7 = dataptr[0] - dataptr[7];
tmp1 = dataptr[1] + dataptr[6];
tmp6 = dataptr[1] - dataptr[6];
tmp2 = dataptr[2] + dataptr[5];
tmp5 = dataptr[2] - dataptr[5];
tmp3 = dataptr[3] + dataptr[4];
tmp4 = dataptr[3] - dataptr[4];
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
*/
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
CONST_BITS-PASS1_BITS);
dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
CONST_BITS-PASS1_BITS);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* cK represents cos(K*pi/16).
* i0..i3 in the paper are tmp4..tmp7 here.
*/
z1 = tmp4 + tmp7;
z2 = tmp5 + tmp6;
z3 = tmp4 + tmp6;
z4 = tmp5 + tmp7;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += z5;
z4 += z5;
dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
dataptr += DCTSIZE; /* advance pointer to next row */
}
}
示例13: idct_sh4
//.........这里部分代码省略.........
*--fblock = fr2;
*--fblock = fr1;
*--fblock = fr0;
fblock+=8+4;
} while(--i);
block-=8*8;
fblock-=8*8+4;
load_matrix(odd_table);
i = 8;
// ofs1 = sizeof(float)*1;
// ofs2 = sizeof(float)*2;
// ofs3 = sizeof(float)*3;
do {
float t0,t1,t2,t3;
fr0 = block[1];
fr1 = block[3];
fr2 = block[5];
fr3 = block[7];
block+=8;
ftrv();
t0 = *fblock++;
t1 = *fblock++;
t2 = *fblock++;
t3 = *fblock++;
fblock+=4;
*--fblock = t0 - fr0;
*--fblock = t1 - fr1;
*--fblock = t2 - fr2;
*--fblock = t3 - fr3;
*--fblock = t3 + fr3;
*--fblock = t2 + fr2;
*--fblock = t1 + fr1;
*--fblock = t0 + fr0;
fblock+=8;
} while(--i);
block-=8*8;
fblock-=8*8;
/* col */
/* even part */
load_matrix(even_table);
ofs1 = sizeof(float)*2*8;
ofs2 = sizeof(float)*4*8;
ofs3 = sizeof(float)*6*8;
i = 8;
#define OA(fblock,ofs) *(float*)((char*)fblock + ofs)
do {
fr0 = OA(fblock, 0);
fr1 = OA(fblock,ofs1);
fr2 = OA(fblock,ofs2);
fr3 = OA(fblock,ofs3);
ftrv();
OA(fblock,0 ) = fr0;
OA(fblock,ofs1) = fr1;
OA(fblock,ofs2) = fr2;
OA(fblock,ofs3) = fr3;
fblock++;
} while(--i);
fblock-=8;
load_matrix(odd_table);
i=8;
do {
float t0,t1,t2,t3;
t0 = OA(fblock, 0); /* [8*0] */
t1 = OA(fblock,ofs1); /* [8*2] */
t2 = OA(fblock,ofs2); /* [8*4] */
t3 = OA(fblock,ofs3); /* [8*6] */
fblock+=8;
fr0 = OA(fblock, 0); /* [8*1] */
fr1 = OA(fblock,ofs1); /* [8*3] */
fr2 = OA(fblock,ofs2); /* [8*5] */
fr3 = OA(fblock,ofs3); /* [8*7] */
fblock+=-8+1;
ftrv();
block[8*0] = DESCALE(t0 + fr0,3);
block[8*7] = DESCALE(t0 - fr0,3);
block[8*1] = DESCALE(t1 + fr1,3);
block[8*6] = DESCALE(t1 - fr1,3);
block[8*2] = DESCALE(t2 + fr2,3);
block[8*5] = DESCALE(t2 - fr2,3);
block[8*3] = DESCALE(t3 + fr3,3);
block[8*4] = DESCALE(t3 - fr3,3);
block++;
} while(--i);
#if defined(__SH4__)
#error "FIXME!! change to double"
#endif
}
示例14: j_rev_dct
void j_rev_dct(DCTBLOCK data)
{
INT32 tmp0, tmp1, tmp2, tmp3;
INT32 tmp10, tmp11, tmp12, tmp13;
INT32 z1, z2, z3, z4, z5;
register DCTELEM *dataptr;
int rowctr;
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
dataptr = data;
for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--)
{
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
z2 = (INT32) dataptr[2];
z3 = (INT32) dataptr[6];
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
tmp0 = ((INT32) dataptr[0] + (INT32) dataptr[4]) << CONST_BITS;
tmp1 = ((INT32) dataptr[0] - (INT32) dataptr[4]) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0 = (INT32) dataptr[7];
tmp1 = (INT32) dataptr[5];
tmp2 = (INT32) dataptr[3];
tmp3 = (INT32) dataptr[1];
z1 = tmp0 + tmp3;
z2 = tmp1 + tmp2;
z3 = tmp0 + tmp2;
z4 = tmp1 + tmp3;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
dataptr += DCTSIZE; /* advance pointer to next row */
}
/* Pass 2: process columns. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
dataptr = data;
for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
z2 = (INT32) dataptr[DCTSIZE*2];
z3 = (INT32) dataptr[DCTSIZE*6];
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
tmp0 = ((INT32) dataptr[DCTSIZE*0] + (INT32) dataptr[DCTSIZE*4]) << CONST_BITS;
tmp1 = ((INT32) dataptr[DCTSIZE*0] - (INT32) dataptr[DCTSIZE*4]) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
//.........这里部分代码省略.........
示例15: ff_j_rev_dct4
//.........这里部分代码省略.........
tmp2 = MULTIPLY(-d6, FIX_1_306562965);
tmp3 = MULTIPLY(d6, FIX_0_541196100);
tmp0 = (d0 + d4) << CONST_BITS;
tmp1 = (d0 - d4) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
}
} else {
if (d2) {
/* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
tmp2 = MULTIPLY(d2, FIX_0_541196100);
tmp3 = MULTIPLY(d2, FIX_1_306562965);
tmp0 = (d0 + d4) << CONST_BITS;
tmp1 = (d0 - d4) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
} else {
/* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
}
}
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
dataptr[0] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
dataptr[1] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
dataptr[2] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
dataptr[3] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
dataptr += DCTSTRIDE; /* advance pointer to next row */
}
/* Pass 2: process columns. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
dataptr = data;
for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
/* Columns of zeroes can be exploited in the same way as we did with rows.
* However, the row calculation has created many nonzero AC terms, so the
* simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
d0 = dataptr[DCTSTRIDE*0];
d2 = dataptr[DCTSTRIDE*1];
d4 = dataptr[DCTSTRIDE*2];
d6 = dataptr[DCTSTRIDE*3];
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
if (d6) {
if (d2) {
/* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
z1 = MULTIPLY(d2 + d6, FIX_0_541196100);