本文整理汇总了C++中CV_RGB函数的典型用法代码示例。如果您正苦于以下问题:C++ CV_RGB函数的具体用法?C++ CV_RGB怎么用?C++ CV_RGB使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了CV_RGB函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: show
static void show()
{
if(!exist_image || !exist_scan){
return;
}
IplImage* image_view = cvCreateImage(cvGetSize(&image), image.depth, image.nChannels);
cvCopy(&image, image_view);
float min_d, max_d;
min_d = max_d = scan_image.distance.at(0);
for(int i = 1; i < IMAGE_WIDTH * IMAGE_HEIGHT; i++){
float di = scan_image.distance.at(i);
max_d = di > max_d ? di : max_d;
min_d = di < min_d ? di : min_d;
}
float wid_d = max_d - min_d;
/*
* Plot depth points on an image
*/
CvPoint pt;
int height, width;
for(int i = 0; i < (int)scan_image.distance.size(); i++) {
height = (int)(i % IMAGE_HEIGHT);
width = (int)(i / IMAGE_HEIGHT);
if(scan_image.distance.at(i) != 0.0) {
pt.x = width;
pt.y = height;
int colorid= wid_d ? ( (scan_image.distance.at(i) - min_d) * 255 / wid_d ) : 128;
cv::Vec3b color=colormap.at<cv::Vec3b>(colorid);
int g = color[1];
int b = color[2];
int r = color[0];
cvCircle(image_view, pt, 2, CV_RGB (r, g, b), CV_FILLED, 8, 0);
}
}
drawRects(image_view,
car_fused_objects.obj,
cvScalar(255.0, 255.0, 0,0),
(image_view->height)*.3);
drawRects(image_view,
pedestrian_fused_objects.obj,
cvScalar(0.0, 255.0, 0,0),
(image_view->height)*.3);
/* PUT DISTANCE text on image */
putDistance(image_view,
car_fused_objects.obj,
(image_view->height)*.3,
car_fused_objects.type.c_str());
putDistance(image_view,
pedestrian_fused_objects.obj,
(image_view->height)*.3,
pedestrian_fused_objects.type.c_str());
/*
* Show image
*/
cvShowImage(window_name, image_view);
cvWaitKey(2);
cvReleaseImage(&image_view);
}
示例2: imageCallback
void imageCallback(const sensor_msgs::ImageConstPtr& msg)
{
//bridge that will transform the message (image) from ROS code back to "image" code
sensor_msgs::CvBridge bridge;
fprintf(stderr, "\n call Back funtion \n");
//publish data (obstacle waypoints) back to the boat
//ros::NodeHandle n;
//std_msgs::Float32 xWaypoint_msg; // X coordinate obstacle message
//std_msgs::Float32 yWaypoint_msg; // Y coordinate obstacle message
//publish the waypoint data
//ros::Publisher waypoint_info_pub = n.advertise<std_msgs::Float32>("waypoint_info", 1000);
//ros::Publisher Ywaypoint_info_pub = n.advertise<std_msgs::Float32>("waypoint_info", 1000);
//std::stringstream ss;
/***********************************************************************/
//live image coming streamed straight from the boat's camera
IplImage* boatFront = bridge.imgMsgToCv(msg, "bgr8");
//The boat takes flipped images, so you need to flip them back to normal
cvFlip(boatFront, boatFront, 0);
IplImage* backUpImage = cvCloneImage(boatFront);
boatFront->origin = IPL_ORIGIN_TL; //sets image origin to top left corner
int X = boatFront->height;
int Y = boatFront->width;
//cout << "height " << X << endl;
//cout << "width " << Y << endl;
/*********************Image Filtering variables****************************/
//these images are used for segmenting objects from the overall background
//create a one channel image to convert from RGB to GRAY
IplImage* grayImage = cvCreateImage(cvGetSize(boatFront),IPL_DEPTH_8U,1);
//convert grayImage to binary (final step after converting from GRAY)
IplImage* bwImage = cvCreateImage(cvGetSize(grayImage),IPL_DEPTH_8U,1);
//variables used for the flood fill segmentation
CvPoint seed_point = cvPoint(boatFront->height/1.45,0); //not sure how this variable works
CvScalar color = CV_RGB(250,0,0);
CvMemStorage* grayStorage = NULL; //memory storage for contour sequence
CvSeq* contours = 0;
// get blobs and filter them using their area
//IplConvKernel* morphKernel = cvCreateStructuringElementEx(5, 5, 1, 1, CV_SHAPE_RECT, NULL);
//IplImage* original, *originalThr;
//IplImage* segmentated = cvCreateImage(cvGetSize(boatFront), 8, 1);
//unsigned int blobNumber = 0;
//IplImage* labelImg = cvCreateImage(cvGetSize(boatFront), IPL_DEPTH_LABEL, 1);
CvMoments moment;
/***********************************************************************/
//boat's edge distance from the camera. This is used for visual calibration
//to know the distance from the boat to the nearest obstacles.
//With respect to the mounted camera, distance is 21 inches (0.5334 m) side to side
//and 15 inches (0.381 m).
//float boatFrontDistance = 0.381; //distance in meters
//float boatSideDistance = 0.5334; //distance in meters
// These variables tell the distance from the center bottom of the image
// (the camera) to the square surrounding a the obstacle
float xObstacleDistance = 0.0;
float yObstacleDistance = 0.0;
float obstacleDistance = 0.0;
float obstacleHeading = 0.0;
int pixelsNumber = 50; //number of pixels for an n x n matrix and # of neighbors
const int arraySize = pixelsNumber;
const int threeArraySize = pixelsNumber;
//if n gets changed, then the algorithm might have to be
//recalibrated. Try to keep it constant
//these variables are used for the k nearest neighbors
//int accuracy;
//reponses for each of the classifications
float responseWaterH, responseWaterS, responseWaterV;
float responseGroundH, responseGroundS, responseGroundV;
float responseSkyH, responseSkyS, responseSkyV;
float averageHue = 0.0;
float averageSat = 0.0;
float averageVal = 0.0;
CvMat* trainClasses = cvCreateMat( pixelsNumber, 1, CV_32FC1 );
CvMat* trainClasses2 = cvCreateMat( pixelsNumber, 1, CV_32FC1 );
//CvMat sample = cvMat( 1, 2, CV_32FC1, _sample );
//used with the classifier
CvMat* trainClassesH = cvCreateMat( pixelsNumber, 1, CV_32FC1 );
CvMat* trainClassesS = cvCreateMat( pixelsNumber, 1, CV_32FC1 );
CvMat* trainClassesV = cvCreateMat( pixelsNumber, 1, CV_32FC1 );
//CvMat* trainClasses2 = cvCreateMat( pixelsNumber, 1, CV_32FC1 );
//CvMat sample = cvMat( 1, 2, CV_32FC1, _sample );
//used with the classifier
/*CvMat* nearestWaterH = cvCreateMat(1, pixelsNumber, CV_32FC1);
CvMat* nearestWaterS = cvCreateMat(1, pixelsNumber, CV_32FC1);
CvMat* nearestWaterV = cvCreateMat(1, pixelsNumber, CV_32FC1);
CvMat* nearestGroundH = cvCreateMat(1, pixelsNumber, CV_32FC1);
CvMat* nearestGroundS = cvCreateMat(1, pixelsNumber, CV_32FC1);
CvMat* nearestGroundV = cvCreateMat(1, pixelsNumber, CV_32FC1);
CvMat* nearestSkyH = cvCreateMat(1, pixelsNumber, CV_32FC1);
CvMat* nearestSkyS = cvCreateMat(1, pixelsNumber, CV_32FC1);
CvMat* nearestSkyV = cvCreateMat(1, pixelsNumber, CV_32FC1);
//Distance
CvMat* distanceWaterH = cvCreateMat(1, pixelsNumber, CV_32FC1);
CvMat* distanceWaterS = cvCreateMat(1, pixelsNumber, CV_32FC1);
CvMat* distanceWaterV = cvCreateMat(1, pixelsNumber, CV_32FC1);
CvMat* distanceGroundH = cvCreateMat(1, pixelsNumber, CV_32FC1);
CvMat* distanceGroundS = cvCreateMat(1, pixelsNumber, CV_32FC1);
CvMat* distanceGroundV = cvCreateMat(1, pixelsNumber, CV_32FC1);
CvMat* distanceSkyH = cvCreateMat(1, pixelsNumber, CV_32FC1);
//.........这里部分代码省略.........
示例3: cvtColor
void face_detector::face_marker_lbp(Mat *frame)
{
static vector<Rect> faces;
static Mat frame_gray;
cvtColor(*frame, frame_gray, COLOR_BGR2GRAY);
equalizeHist(frame_gray, frame_gray);
static String face_cascade_name = "lbpcascade_frontalface.xml";
static String eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml";
static CascadeClassifier face_cascade;
static CascadeClassifier eyes_cascade;
static bool loaded = false;
if (!loaded) {
if(!face_cascade.load(face_cascade_name)) {
fprintf(stderr, "Could not load face classifier cascade!");
exit(1);
}
if(!eyes_cascade.load( eyes_cascade_name)) {
fprintf(stderr, "Could not load eye classifier cascade!");
exit(1);
}
}
loaded = true;
static Cgt_Rect _area;
static Rect largestFace;
static Mat smallImgROI;
static Rect eyeArea;
static Cgt_Eye _iris_point;
static Rect leftEyeRect(0,0,0,0), rightEyeRect(0,0,0,0);
static vector<Rect> eyes;
static Point left_top, right_bottom;
face_cascade.detectMultiScale(frame_gray, faces, 1.1, 2, 0, Size(40, 40));
if(faces.empty() == false) {
//取最大的脸
largestFace.width=0;
largestFace.height=0;
for (vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++) {
if ((r->width * r->height) > (largestFace.width * largestFace.height))
largestFace = *r;
}
// 将最大人脸区域赋给area
_area.left = largestFace.x;
_area.right = largestFace.x + largestFace.width;
_area.top = largestFace.y;
_area.bottom = largestFace.y + largestFace.height;
///////////针对最大的脸检测人眼////////////////////////////////
eyeArea = largestFace;
eyeArea.height = eyeArea.height/1.2; //仅对人脸的上半部分检测人眼,以减少错误率 //调整一下参数,只对上半部分有时检测不出来
smallImgROI = (*frame)(eyeArea);
eyes_cascade.detectMultiScale(smallImgROI, eyes, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );
if(eyes.size()>=2) { //必须至少有两只眼被检出
vector<Rect>::const_iterator nr = eyes.begin();
leftEyeRect = *nr;
nr++;
rightEyeRect = *nr;
} else {
//fprintf(stderr, "必须至少有两只眼被检出!\n");
return;
}
_iris_point.xleft = cvRound(largestFace.x + leftEyeRect.x + leftEyeRect.width*0.5); //左眼中心的x坐标
_iris_point.yleft = cvRound(largestFace.y + leftEyeRect.y + leftEyeRect.height*0.5); //左眼中心的y坐标
_iris_point.xright = cvRound(largestFace.x + rightEyeRect.x + rightEyeRect.width*0.5); //右眼中心的x坐标
_iris_point.yright = cvRound(largestFace.y + rightEyeRect.y + rightEyeRect.height*0.5); //右眼中心的y坐标
//对眼睛的后期验证:
//不允许左眼在右眼右边
// if(iris_point.xleft >= iris_point.xright )
// fprintf(stderr, "11111111111"), nRetCode = false;
//不允许眼睛在边界(由于,初始化的值为0,这也意味着如果少于两个眼检测出来,则认为检测失败)
if ((_iris_point.xleft==0) || (_iris_point.yleft==0) ||(_iris_point.xright==0) || (_iris_point.yright==0) )
return;
//不允许两只眼上下倾斜过多(也防止一些误检)
if (abs(_iris_point.yright-_iris_point.yleft) > (largestFace.width/3) )
return;
//不允许两只眼左右间距小于1/4人脸宽度(也防止一些误检)
if (abs(_iris_point.xright-_iris_point.xleft) < (largestFace.width/4) )
return;
//画出框到的人脸,验证调试用
left_top.x = _area.left;
left_top.y = _area.top;
right_bottom.x = _area.right;
right_bottom.y = _area.bottom;
rectangle(*frame, left_top, right_bottom, CV_RGB(0,255,0), 2, 8, 0);
left_top.x = _iris_point.xleft;
left_top.y = _iris_point.yleft;
right_bottom.x = left_top.x;
right_bottom.y = left_top.y;
rectangle(*frame, left_top, right_bottom, CV_RGB(90, 255, 0), 2, 8, 0);
left_top.x = _iris_point.xright;
left_top.y = _iris_point.yright;
right_bottom.x = left_top.x;
right_bottom.y = left_top.y;
rectangle(*frame, left_top, right_bottom, CV_RGB(0, 255, 0), 2, 8, 0);
}
}
示例4: faceDetection
Mat faceDetection(Mat &videoFrame, double scaleFactor, int scaledWidth, bool eyesDetect, bool mouthDetect, CascadeClassifier &mFaceDetector, CascadeClassifier &mMouthDetector, CascadeClassifier &mEyeDetector, QString personName ) {
Mat defaultFace;
Mat grayscaleFace;
Mat equalizedFace;
Mat resizedFace;
Mat savedFace;
const double CHANGE_IMAGE = 0.5; //0.3; // Change in face from last time
const double CHANGE_TIME = 0.5;//1.0; // Time change old - new
/*grayscale image*/
videoFrame.copyTo( defaultFace );
if (defaultFace.channels() == 3) {
cvtColor(defaultFace, grayscaleFace, CV_BGR2GRAY);
}
else if (defaultFace.channels() == 4) {
cvtColor(defaultFace, grayscaleFace, CV_BGRA2GRAY);
}
else {
grayscaleFace = defaultFace;
}
/*shrinked image*/
float scale = defaultFace.cols / (float)scaledWidth;
if (defaultFace.cols > scaledWidth) {
int scaledHeight = cvRound(defaultFace.rows / scale);
resize(grayscaleFace, resizedFace, Size(scaledWidth, scaledHeight));
}
else {
resizedFace = grayscaleFace;
}
/**/
vector< cv::Rect > faceVec;
mFaceDetector.detectMultiScale( resizedFace, faceVec, scaleFactor );
for( size_t i=0; i<faceVec.size(); i++ ) {
cv::rectangle( defaultFace, faceVec[i], CV_RGB(255,200,0), 2 );
cv::Mat face = resizedFace( faceVec[i] );
// EyesDetection
if( eyesDetect == 1 ) {
vector< cv::Rect > eyeVec;
mEyeDetector.detectMultiScale(face, eyeVec);
for( size_t j=0; j<eyeVec.size(); j++ ) {
cv::Rect rect = eyeVec[j];
rect.x += faceVec[i].x;
rect.y += faceVec[i].y;
//saveFace(face);
cv::rectangle(resizedFace, rect, CV_RGB(0,255,0), 2 );
}
}
// MouthDetection
/*if mouth was detected on second part of face, face is equalized, normalized by size and saved, if it is not as the face saved last time.*/
if( mouthDetect == 1 ) {
vector< cv::Rect > mouthVec;
Rect halfRect = faceVec[i];
halfRect.height /= 2;
halfRect.y += halfRect.height;
Mat halfFace = videoFrame( halfRect );
mMouthDetector.detectMultiScale( halfFace, mouthVec, 3 );
for( size_t j=0; j<mouthVec.size(); j++ ) {
cv::Rect rect = mouthVec[j];
rect.x += halfRect.x;
rect.y += halfRect.y;
Mat equalizedImg;
equalizeHist(face, equalizedImg);
Mat face_resized;
resize(equalizedImg, face_resized, Size(faceSize, faceSize), 1.0, 1.0, INTER_CUBIC);
double imageDiff = 10000000000.0;
if (oldFace.data) {
imageDiff = norm(face_resized, oldFace, NORM_L2)/(double)(face_resized.rows * face_resized.cols);
}
double current_time = (double)getTickCount();
double timeDiff_seconds = (current_time - oldTime)/getTickFrequency();
cout << "imageDiff " << imageDiff << " and timeDiff " << timeDiff_seconds << " and oldtime " << oldTime << " and currentTime " <<current_time << "\n";
if ((imageDiff > CHANGE_IMAGE) && (timeDiff_seconds > CHANGE_TIME)) {
saveFace(face_resized, personName);
qDebug() << "Photo was saved";
cv::rectangle( defaultFace, rect, CV_RGB(255,255,255), 2 );
Mat displayedFaceRegion = defaultFace( faceVec[i]);
displayedFaceRegion += CV_RGB(90,90,90);
oldFace = face_resized.clone();
oldTime = current_time;
}
}
}
//.........这里部分代码省略.........
示例5: gst_motiondetect_transform_ip
static GstFlowReturn
gst_motiondetect_transform_ip (GstBaseTransform * trans, GstBuffer * buf)
{
GstMessage *m = NULL;
StbtMotionDetect *filter = GST_MOTIONDETECT (trans);
if ((!filter) || (!buf)) {
return GST_FLOW_OK;
}
GST_OBJECT_LOCK(filter);
if (filter->enabled && filter->state != MOTION_DETECT_STATE_INITIALISING) {
IplImage *referenceImageGrayTmp = NULL;
static int frameNo = 1;
filter->cvCurrentImage->imageData = (char *) GST_BUFFER_DATA (buf);
cvCvtColor( filter->cvCurrentImage,
filter->cvCurrentImageGray, CV_BGR2GRAY );
if (filter->debugDirectory) {
gst_motiondetect_log_image (filter->cvCurrentImageGray,
filter->debugDirectory, frameNo, "source.png");
}
if (filter->state == MOTION_DETECT_STATE_REFERENCE_IMAGE_ACQUIRED) {
gboolean result;
result = gst_motiondetect_apply(
filter->cvReferenceImageGray, filter->cvCurrentImageGray,
filter->cvMaskImage, filter->noiseThreshold);
if (filter->debugDirectory) {
if (result) {
gst_motiondetect_log_image (filter->cvReferenceImageGray,
filter->debugDirectory, frameNo,
"absdiff_not_masked_motion.png");
} else {
gst_motiondetect_log_image (filter->cvReferenceImageGray,
filter->debugDirectory, frameNo,
"absdiff_not_masked_no_motion.png");
}
gst_motiondetect_log_image (filter->cvMaskImage,
filter->debugDirectory, frameNo, "mask.png");
}
GstStructure *s = gst_structure_new ("motiondetect",
"has_motion", G_TYPE_BOOLEAN, result,
"masked", G_TYPE_BOOLEAN, (filter->mask != NULL),
"mask_path", G_TYPE_STRING, filter->mask, NULL);
m = gst_message_new_element (GST_OBJECT (filter), s);
if (filter->display) {
buf = gst_buffer_make_writable (buf);
cvSubS (filter->cvCurrentImage, CV_RGB(100, 100, 100),
filter->cvCurrentImage, filter->cvInvertedMaskImage);
if (result) {
cvAddS (filter->cvCurrentImage, CV_RGB(50, 0, 0),
filter->cvCurrentImage, filter->cvMaskImage);
}
}
}
referenceImageGrayTmp = filter->cvReferenceImageGray;
filter->cvReferenceImageGray = filter->cvCurrentImageGray;
filter->cvCurrentImageGray = referenceImageGrayTmp;
filter->state = MOTION_DETECT_STATE_REFERENCE_IMAGE_ACQUIRED;
++frameNo;
}
GST_OBJECT_UNLOCK(filter);
if (m) {
gst_element_post_message (GST_ELEMENT (filter), m);
}
return GST_FLOW_OK;
}
示例6: main
/*
* -d 0,1,2,3,4 =>/dev/video0,video1,...
* -f static file
*
*/
int main (int argc, char * argv[]) {
//Two boolean variables
char quit = 0; //Exit main program loop?
char grab_frame = 1; //Do we grab a new frame from the camera?
int thresh1=DEFAULT_TRACKBAR_VAL, thresh2=DEFAULT_TRACKBAR_VAL; //These two variables will hold trackbar positions.
if(argc==1){
camID=0;
printf("set default camera 0\n");
}else if(option(argc,argv) < 0 ){
printf( "Wrong args!!!\n");
exit(EXIT_FAILURE);
}
//These are pointers to IPL images, which will hold the result of our calculations
IplImage *small_image = NULL; /*cvCreateImage(cvSize(IMG_WIDTH,IMG_HEIGHT),IPL_DEPTH_8U,3)*/; //size, depth, channels (RGB = 3)
IplImage *small_grey_image = NULL;/*cvCreateImage(cvGetSize(small_image), IPL_DEPTH_8U, 1)*/; //1 channel for greyscale
IplImage *edge_image = NULL; /*cvCreateImage(cvGetSize(small_image), IPL_DEPTH_8U, 1)*/; //We use cvGetSize to make sure the images are the same size.
//CvMemStorage and CvSeq are structures used for dynamic data collection. CvMemStorage contains pointers to the actual
//allocated memory, but CvSeq is used to access this data. Here, it will hold the list of image contours.
CvMemStorage *storage = cvCreateMemStorage(0);
CvSeq *contours = 0;
CvCapture *camera=NULL;
if(camID>=0){
camera = cvCreateCameraCapture(camID); //This function tries to connect to the first (0th) camera it finds and creates a structure to refer to it.
if(!camera){ //cvCreateCameraCapture failed, most likely there is no camera connected.
printf("Could not find a camera to capture from...\n"); //Notify the user...
return -1; //And quit with an error.
}
}
cvNamedWindow(MAIN_WINNAME, CV_WINDOW_AUTOSIZE); //Here we create a window and give it a name. The second argument tells the window to not automatically adjust its size.
//We add two trackbars (sliders) to the window. These will be used to set the parameters for the Canny edge detection.
cvCreateTrackbar("Thresh1", MAIN_WINNAME, &thresh1, 256, 0);
cvCreateTrackbar("Thresh2", MAIN_WINNAME, &thresh2, 256, 0);
//Set the trackbar position to the default value.
cvSetTrackbarPos("Thresh1", MAIN_WINNAME, DEFAULT_TRACKBAR_VAL); //Trackbar name, window name, position
cvSetTrackbarPos("Thresh2", MAIN_WINNAME, DEFAULT_TRACKBAR_VAL);
//Now set the mouse callback function. We need to pass the location of the contours so that it will be able to access this information.
cvSetMouseCallback(MAIN_WINNAME, onMouse, &contours); //Window name, function pointer, user-defined parameters.
IplImage *frame=NULL; //This will point to the IPL image we will retrieve from the camera.
IplImage *frame_org=NULL;
if(camID < 0){
frame_org = cvLoadImage(orgFile, CV_LOAD_IMAGE_UNCHANGED);
frame = cvLoadImage(inFile, CV_LOAD_IMAGE_UNCHANGED);
}
//This is the main program loop. We exit the loop when the user sets quit to true by pressing the "esc" key
while(!quit){
int c =0;
if(camID >= 0){
c=cvWaitKey(30); //Wait 30 ms for the user to press a key.
//Respond to key pressed.
switch(c){
case 32: //Space
grab_frame = !grab_frame; //Reverse the value of grab_frame. That way, the user can toggle by pressing the space bar.
break;
case 27: //Esc: quit application when user presses the 'esc' key.
quit = 1; //Get out of loop
break;
};
//If we don't have to grab a frame, we're done for this pass.
if(!grab_frame)continue;
//Grab a frame from the camera.
frame = cvQueryFrame(camera);
if(!frame) continue; //Couldn't get an image, try again next time.
}
//In computer vision, it's always better to work with the smallest images possible, for faster performance.
//cvResize will use inter-linear interpolation to fit frame into small_image.
if(small_image==NULL){
small_image = cvCreateImage(cvSize(frame->width,frame->height),IPL_DEPTH_8U,3); //size, depth, channels (RGB = 3)
printf("w=%d, h=%d\n", frame->width,frame->height);
}
if(small_grey_image==NULL) small_grey_image=cvCreateImage(cvGetSize(small_image), IPL_DEPTH_8U, 1);
if(edge_image==NULL) edge_image = cvCreateImage(cvGetSize(small_image), IPL_DEPTH_8U, 1);
cvResize(frame, small_image, CV_INTER_LINEAR);
//Many computer vision algorithms do not use colour information. Here, we convert from RGB to greyscale before processing further.
cvCvtColor(small_image, small_grey_image, CV_RGB2GRAY);
//We then detect edges in the image using the Canny algorithm. This will return a binary image, one where the pixel values will be 255 for
//pixels that are edges and 0 otherwise. This is unlike other edge detection algorithms like Sobel, which compute greyscale levels.
cvCanny(small_grey_image, edge_image, (double)thresh1, (double)thresh2, 3); //We use the threshold values from the trackbars and set the window size to 3
//.........这里部分代码省略.........
示例7: main
int main( int argc, char** argv )
{
const char *pstrWindowsSrcTitle = "Original picture";
const char *pstrWindowsOutLineTitle = "Outline picture";
const int IMAGE_WIDTH = 400;
const int IMAGE_HEIGHT = 200;
// 创建图像
IplImage *pSrcImage = cvCreateImage(cvSize(IMAGE_WIDTH, IMAGE_HEIGHT), IPL_DEPTH_8U, 3);
// 填充成白色
cvRectangle(pSrcImage, cvPoint(0, 0), cvPoint(pSrcImage->width, pSrcImage->height), CV_RGB(255, 255, 255), CV_FILLED);
// 画圆
CvPoint ptCircleCenter = cvPoint(IMAGE_WIDTH / 4, IMAGE_HEIGHT / 2);
int nRadius = 80;
cvCircle(pSrcImage, ptCircleCenter, nRadius, CV_RGB(255, 255, 0), CV_FILLED);
ptCircleCenter = cvPoint(IMAGE_WIDTH / 4, IMAGE_HEIGHT / 2);
nRadius = 30;
cvCircle(pSrcImage, ptCircleCenter, nRadius, CV_RGB(255, 255, 255), CV_FILLED);
// 画矩形
CvPoint ptLeftTop = cvPoint(IMAGE_WIDTH / 2 + 20, 20);
CvPoint ptRightBottom = cvPoint(IMAGE_WIDTH - 20, IMAGE_HEIGHT - 20);
cvRectangle(pSrcImage, ptLeftTop, ptRightBottom, CV_RGB(0, 255, 255), CV_FILLED);
ptLeftTop = cvPoint(IMAGE_WIDTH / 2 + 60, 40);
ptRightBottom = cvPoint(IMAGE_WIDTH - 60, IMAGE_HEIGHT - 40);
cvRectangle(pSrcImage, ptLeftTop, ptRightBottom, CV_RGB(255, 255, 255), CV_FILLED);
// 显示原图
cvNamedWindow(pstrWindowsSrcTitle, CV_WINDOW_AUTOSIZE);
cvShowImage(pstrWindowsSrcTitle, pSrcImage);
// 转为灰度图
IplImage *pGrayImage = cvCreateImage(cvGetSize(pSrcImage), IPL_DEPTH_8U, 1);
cvCvtColor(pSrcImage, pGrayImage, CV_BGR2GRAY);
// 转为二值图
IplImage *pBinaryImage = cvCreateImage(cvGetSize(pGrayImage), IPL_DEPTH_8U, 1);
cvThreshold(pGrayImage, pBinaryImage, 250, 255, CV_THRESH_BINARY);
// 检索轮廓并返回检测到的轮廓的个数
CvMemStorage *pcvMStorage = cvCreateMemStorage();
CvSeq *pcvSeq = NULL;
cvFindContours(pBinaryImage, pcvMStorage, &pcvSeq, sizeof(CvContour), CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cvPoint(0, 0));
// 画轮廓图
IplImage *pOutlineImage = cvCreateImage(cvGetSize(pSrcImage), IPL_DEPTH_8U, 3);
int nLevels = 5;
// 填充成白色
cvRectangle(pOutlineImage, cvPoint(0, 0), cvPoint(pOutlineImage->width, pOutlineImage->height), CV_RGB(255, 255, 255), CV_FILLED);
cvDrawContours(pOutlineImage, pcvSeq, CV_RGB(255,0,0), CV_RGB(0,255,0), nLevels, 2);
// 显示轮廓图
cvNamedWindow(pstrWindowsOutLineTitle, CV_WINDOW_AUTOSIZE);
cvShowImage(pstrWindowsOutLineTitle, pOutlineImage);
cvWaitKey(0);
cvReleaseMemStorage(&pcvMStorage);
cvDestroyWindow(pstrWindowsSrcTitle);
cvDestroyWindow(pstrWindowsOutLineTitle);
cvReleaseImage(&pSrcImage);
cvReleaseImage(&pGrayImage);
cvReleaseImage(&pBinaryImage);
cvReleaseImage(&pOutlineImage);
return 0;
}
示例8: meanShift
//.........这里部分代码省略.........
return;
for(i=0;i<points2.size();i++)
{
bmp.push_back( points2[i]);
tempBd.push_back(bdescriptors.row(queryIdxs[i]));
tempbk.push_back(keypoints2[trainIdxs[i]]);
tempBd.push_back(descriptors2.row(trainIdxs[i]));
tempbk.push_back(keypoints2[trainIdxs[i]]);
}
}
else
{
H12 = findHomography( Mat(points1), Mat(points2), CV_RANSAC, RANSAC_THREHOLD );
if( !H12.empty() )
{
Mat points1t; perspectiveTransform(Mat(points1), points1t, H12);
for( size_t i1 = 0; i1 < points1.size(); i1++ )
{
double diff = norm(points2[i1] - points1t.at<Point2f>((int)i1,0));
if(diff <= 20)
{
matchesMask[i1]=1;
bmp.push_back( points2[i1]);
tempBd.push_back(bdescriptors.row(queryIdxs[i1]));
tempbk.push_back(keypoints2[trainIdxs[i1]]);
tempBd.push_back(descriptors2.row(trainIdxs[i1]));
tempbk.push_back(keypoints2[trainIdxs[i1]]);
}
}
drawMatches( img1ROI, bkeypoints, img2ROI, keypoints2, filteredMatches, drawImg, CV_RGB(0, 255, 0), CV_RGB(0, 0, 255), matchesMask
#if DRAW_RICH_KEYPOINTS_MODE
, DrawMatchesFlags::DRAW_RICH_KEYPOINTS
#endif
);
}
}
imshow("bm",drawImg);
//============edit part ====
shiftPoints(bmp, box);
vector<int> bflag(bmp.size(),0);
for(i=0;i<bmp.size();i++)
bflag[i]=0;
vector<int> ft(matchedPoints2.size(),0);
for(i=0;i<matchedPoints2.size();i++)
{
ft[i]=0;
for(j=0; j< bmp.size(); j++)
{
double diff = norm (matchedPoints2[i] - bmp[j]);
// cout << diff << endl;
if(diff < 0.5)
{
bflag[j]=1;
ft[i]=1;
break;
}
}
示例9: doIteration
//.........这里部分代码省略.........
mDesc1.push_back(descriptors1.row(queryIdxs[i]));
mDesc2.push_back(descriptors2.row(trainIdxs[i]));
}
vector<Point2f> points1; KeyPoint::convert(keypoints1, points1, queryIdxs);
vector<Point2f> points2; KeyPoint::convert(keypoints2, points2, trainIdxs);
vector<char> matchesMask( filteredMatches.size(), 0 );//, matchesMask2( filteredMatches.size(), 1 );;
Mat drawImg;// drawImg2;
cout << "points2.size \t" << points2.size() << endl;
cout <<"HELLO \t" << endl;
if( RANSAC_THREHOLD >= 0 )
{
if (points2.size() < 4 )
{
cout << "matchedPoints1 less than 4, hence prev ROI is retained" << endl;
for(size_t i1=0;i1<points2.size();i1++)
{
matchesMask[i1] = 1;
matchedPoints1.push_back( points1[i1]);
matchedPoints2.push_back( points2[i1]);
matchedDesc1.push_back(descriptors1.row(queryIdxs[i1]));
matchedDesc2.push_back(descriptors2.row(trainIdxs[i1]));
tempkey.push_back(keypoints2[trainIdxs[i1]]);
MP1.push_back(points2[i1]);
}
}
else
{
H12 = findHomography( Mat(points1), Mat(points2), CV_RANSAC, RANSAC_THREHOLD );
if( !H12.empty() )
{
Mat points1t; perspectiveTransform(Mat(points1), points1t, H12);
vector<Point2f> points2Shift(points2.size());
points2Shift = points2;
shiftPoints(points2Shift, box);
Point2f boxCenter;
boxCenter.x = box.x + box.width/2;
boxCenter.y = box.y + box.height/2;
for( size_t i1 = 0; i1 < points1.size(); i1++ )
{
double descDiff = pow(norm(mDesc1.row(i1) - mDesc2.row(i1)) , 2);
// if(descDiff < 0.08)
{
double diff = norm(points2[i1] - points1t.at<Point2f>((int)i1,0));
if(diff <= 30)
{
// cout << diff << endl;
matchesMask[i1] = 1;
matchedPoints1.push_back( points1[i1]);
matchedPoints2.push_back( points2[i1]);
matchedDesc1.push_back(descriptors1.row(queryIdxs[i1]));
matchedDesc2.push_back(descriptors2.row(trainIdxs[i1]));
tempkey.push_back(keypoints2[trainIdxs[i1]]);
MP1.push_back(points2[i1]);
}
}
}
}
// drawMatches( img1, keypoints1, img2, keypoints2, filteredMatches, drawImg2, CV_RGB(255, 255, 0), CV_RGB(255,255, 255), matchesMask2
// #if DRAW_RICH_KEYPOINTS_MODE
// , DrawMatchesFlags::DRAW_RICH_KEYPOINTS
// #endif
// );
drawMatches( img1, keypoints1, img2, keypoints2, filteredMatches, drawImg, CV_RGB(0, 255, 0), CV_RGB(0, 0, 255), matchesMask
#if DRAW_RICH_KEYPOINTS_MODE
, DrawMatchesFlags::DRAW_RICH_KEYPOINTS
#endif
);
cout << endl;
imshow( "doiter", drawImg );
// Mat newimg = img1.clone();
// KeyPoint::convert(keypoints1, points1);
// for(size_t i=0;i<points1.size();i++)
// circle(newimg, points1[i], 2, Scalar(255,0,255),2);
// imshow( "doimg", newimg );
// points1.clear();
// waitKey(0);
}
}
// waitKey(0);
}
示例10: cvRenderTracks
void cvRenderTracks(CvTracks const tracks, IplImage *imgSource, IplImage *imgDest, unsigned short mode, CvFont *font)
{
CV_FUNCNAME("cvRenderTracks");
__CV_BEGIN__;
CV_ASSERT(imgDest&&(imgDest->depth==IPL_DEPTH_8U)&&(imgDest->nChannels==3));
if ((mode&CV_TRACK_RENDER_ID)&&(!font))
{
if (!defaultFont)
{
font = defaultFont = new CvFont;
cvInitFont(font, CV_FONT_HERSHEY_DUPLEX, 0.5, 0.5, 0, 1);
// Other fonts:
// CV_FONT_HERSHEY_SIMPLEX, CV_FONT_HERSHEY_PLAIN,
// CV_FONT_HERSHEY_DUPLEX, CV_FONT_HERSHEY_COMPLEX,
// CV_FONT_HERSHEY_TRIPLEX, CV_FONT_HERSHEY_COMPLEX_SMALL,
// CV_FONT_HERSHEY_SCRIPT_SIMPLEX, CV_FONT_HERSHEY_SCRIPT_COMPLEX
}
else
font = defaultFont;
}
if (mode)
{
for (CvTracks::const_iterator it=tracks.begin(); it!=tracks.end(); ++it)
{
if (mode&CV_TRACK_RENDER_ID)
if (!it->second->inactive)
{
stringstream buffer;
buffer << it->first;
cvPutText(imgDest, buffer.str().c_str(), cvPoint((int)it->second->centroid.x, (int)it->second->centroid.y), font, CV_RGB(255.,255.,0.));
}
if (mode&CV_TRACK_RENDER_BOUNDING_BOX)
if (it->second->inactive)
cvRectangle(imgDest, cvPoint(it->second->minx, it->second->miny), cvPoint(it->second->maxx-1, it->second->maxy-1), CV_RGB(0., 0., 50.));
else
cvRectangle(imgDest, cvPoint(it->second->minx, it->second->miny), cvPoint(it->second->maxx-1, it->second->maxy-1), CV_RGB(0., 255., 0.));
if (mode&CV_TRACK_RENDER_TO_LOG)
{
clog << "Track " << it->second->id << endl;
if (it->second->inactive)
clog << " - Inactive for " << it->second->inactive << " frames" << endl;
else
clog << " - Associated with blob " << it->second->label << endl;
clog << " - Lifetime " << it->second->lifetime << endl;
clog << " - Active " << it->second->active << endl;
clog << " - Bounding box: (" << it->second->minx << ", " << it->second->miny << ") - (" << it->second->maxx << ", " << it->second->maxy << ")" << endl;
clog << " - Centroid: (" << it->second->centroid.x << ", " << it->second->centroid.y << ")" << endl;
clog << endl;
}
if (mode&CV_TRACK_RENDER_TO_STD)
{
cout << "Track " << it->second->id << endl;
if (it->second->inactive)
cout << " - Inactive for " << it->second->inactive << " frames" << endl;
else
cout << " - Associated with blobs " << it->second->label << endl;
cout << " - Lifetime " << it->second->lifetime << endl;
cout << " - Active " << it->second->active << endl;
cout << " - Bounding box: (" << it->second->minx << ", " << it->second->miny << ") - (" << it->second->maxx << ", " << it->second->maxy << ")" << endl;
cout << " - Centroid: (" << it->second->centroid.x << ", " << it->second->centroid.y << ")" << endl;
cout << endl;
}
}
}
__CV_END__;
}
示例11: printf
void ImageViewer::displayMatches(QPainter& painter)const
{
QPoint pt1, pt2;
if (siftObj1.keypoints==NULL){
printf("ERROR : Keypoints NULL\n");
exit(-1);
}
if (dispMatch && lastComparison.tab_match!=NULL && !siftObj1.IsEmpty() ){
// Display matches
for (int i=0;i<lastComparison.nb_match;i++) {
pt1.setX(ROUND(lastComparison.tab_match[i].x1));
pt1.setY(ROUND(lastComparison.tab_match[i].y1));
pt2.setX(ROUND(lastComparison.tab_match[i].x2));
pt2.setY(ROUND(lastComparison.tab_match[i].y2 + siftObj1.im->height));
painter.setBrush(Qt::white);
if (lastComparison.tab_match[i].id==0)
painter.setPen(Qt::red); //red for discarded matches
else painter.setPen(Qt::green); //green
painter.drawLine(pt1, pt2);
painter.drawEllipse(pt1, 3, 3);
painter.drawEllipse(pt2, 3, 3);
}
}
#ifdef AAA
//IplImage * im,* imcol;
QSize s;
//QPoint pt1, pt2;
//CvScalar color;
int i,j,im2null=0;
Keypoint k1*=siftObj1->keypoints;
Keypoint k2*=siftObj2->keypoints;
/*Affine transform of the image border*/
if (param.size_m()>0) {
Matrice p1(2,1), p2(2,1), p3(2,1), p4(2,1), transl(2,1);
transl.set_val(0,0,0);
transl.set_val(1,0,im1->height);
p1.set_val(0,0,0);
p1.set_val(1,0,0);
p2.set_val(0,0,im1->width);
p2.set_val(1,0,0);
p3.set_val(0,0,im1->width);
p3.set_val(1,0,im1->height);
p4.set_val(0,0,0);
p4.set_val(1,0,im1->height);
p1=Transform(p1,param)+transl;
p2=Transform(p2,param)+transl;
p3=Transform(p3,param)+transl;
p4=Transform(p4,param)+transl;
color=CV_RGB(0,128,255); //light blue
pt1.x=ROUND(p1.get_val(0,0));
pt1.y=ROUND(p1.get_val(1,0));
pt2.x=ROUND(p2.get_val(0,0));
pt2.y=ROUND(p2.get_val(1,0));
cvLine(imcol, pt1, pt2, color, 1);
pt1.x=ROUND(p2.get_val(0,0));
pt1.y=ROUND(p2.get_val(1,0));
pt2.x=ROUND(p3.get_val(0,0));
pt2.y=ROUND(p3.get_val(1,0));
cvLine(imcol, pt1, pt2, color, 1);
pt1.x=ROUND(p3.get_val(0,0));
pt1.y=ROUND(p3.get_val(1,0));
pt2.x=ROUND(p4.get_val(0,0));
pt2.y=ROUND(p4.get_val(1,0));
cvLine(imcol, pt1, pt2, color, 1);
pt1.x=ROUND(p4.get_val(0,0));
pt1.y=ROUND(p4.get_val(1,0));
pt2.x=ROUND(p1.get_val(0,0));
pt2.y=ROUND(p1.get_val(1,0));
cvLine(imcol, pt1, pt2, color, 1);
/* Draw the border of the object */
CvMemStorage *storage= cvCreateMemStorage (0); /* Memory used by openCV */
int header_size = sizeof( CvContour );
CvSeq *contours;
IplImage* imthres = cvCreateImage(cvSize(im1->width,im1->height),IPL_DEPTH_8U, 1 );
cvCopy( im1, imthres, 0 );
/* First find the contour of a thresholded image*/
cvThreshold(imthres, imthres, border_threshold, 255, CV_THRESH_BINARY );
cvFindContours ( imthres, storage, &contours, header_size, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
/* For each contour found*/
while ( contours != NULL) {
double area=fabs(cvContourArea(contours,CV_WHOLE_SEQ)); // compute area
if ( area > 20) {
for (int i=0;i<contours->total;i++) {
/* Compute transform of contour*/
//.........这里部分代码省略.........
示例12: computeVectors
static void computeVectors( IplImage* img, IplImage* dst, short wROI, short hROI){
if(DEBUG){
std::cout << "-- VECTOR COMPUTING" << std::endl;
}
double timestamp = (double)clock()/CLOCKS_PER_SEC; // get current time in seconds
CvSize size = cvSize(img->width,img->height); // get current frame size 640x480
int i, idx1 = last, idx2;
CvSeq* seq;
CvRect comp_rect;
CvRect roi;
double count;
double angle;
CvPoint center;
double magnitude;
CvScalar color;
//--SURF CORNERS--
if(DEBUG){
std::cout << "--- SURF CORNERS" << std::endl;
}
color = CV_RGB(0,255,0);
CvMemStorage* storage2 = cvCreateMemStorage(0);
CvSURFParams params = cvSURFParams(SURF_THRESHOLD, 1);
CvSeq *imageKeypoints = 0, *imageDescriptors = 0;
cvExtractSURF( dst, 0, &imageKeypoints, &imageDescriptors, storage2, params );
if(DEBUG){
printf("Image Descriptors: %d\n", imageDescriptors->total);
}
for( int j = 0; j < imageKeypoints->total; j++ ){
CvSURFPoint* r = (CvSURFPoint*)cvGetSeqElem( imageKeypoints, j );
center.x = cvRound(r->pt.x);
center.y = cvRound(r->pt.y);
if(DEBUG){
printf("j: %d \t", j);
printf("total: %d \t", imageKeypoints->total);
printf("valor hessiano: %f \t", r->hessian);
printf("x: %d \t", center.x);
printf("y: %d \n", center.y);
}
// Agrego el Punto en donde es la region que nos interesa
cvCircle( dst, center, cvRound(r->hessian*0.02), color, 3, CV_AA, 0 );
// Lleno la matriz con los vectores
relevancePointToVector(center.x, center.y, wROI, hROI, 5);
}
//--SURF CORNERS
// calculate motion gradient orientation and valid orientation mask
cvCalcMotionGradient( mhi, mask, orient, MAX_TIME_DELTA, MIN_TIME_DELTA, 3 );
// Compute Motion on 4x4 Cuadrants
if(DEBUG){
std::cout << "--- MOTION CUADRANTS" << std::endl;
}
i = 25;
color = CV_RGB(255,0,0);
magnitude = 30;
for (int r = 0; r < size.height; r += hROI){
for (int c = 0; c < size.width; c += wROI){
comp_rect.x = c;
comp_rect.y = r;
comp_rect.width = (c + wROI > size.width) ? (size.width - c) : wROI;
comp_rect.height = (r + hROI > size.height) ? (size.height - r) : hROI;
cvSetImageROI( mhi, comp_rect );
cvSetImageROI( orient, comp_rect );
cvSetImageROI( mask, comp_rect );
cvSetImageROI( silh, comp_rect );
cvSetImageROI( img, comp_rect );
// Process Motion
angle = cvCalcGlobalOrientation( orient, mask, mhi, timestamp, MHI_DURATION);
angle = 360.0 - angle; // adjust for images with top-left origin
count = cvNorm( silh, 0, CV_L1, 0 ); // calculate number of points within silhouette ROI
roi = cvGetImageROI(mhi);
center = cvPoint( (comp_rect.x + comp_rect.width/2),
(comp_rect.y + comp_rect.height/2) );
cvCircle( dst, center, cvRound(magnitude*1.2), color, 3, CV_AA, 0 );
cvLine( dst, center, cvPoint( cvRound( center.x + magnitude*cos(angle*CV_PI/180)),
cvRound( center.y - magnitude*sin(angle*CV_PI/180))), color, 3, CV_AA, 0 );
if(DEBUG){
std::cout << "Motion " << i << " -> x: " << roi.x << " y: " << roi.y << " count: " << count << " angle: " << angle << std::endl; // print the roi
}
cvResetImageROI( mhi );
cvResetImageROI( orient );
cvResetImageROI( mask );
cvResetImageROI( silh );
cvResetImageROI(img);
relevanceDirectionToVector(i, angle);
++i;
}
}
// Compute Global Motion
if(DEBUG){
std::cout << "--- MOTION GLOBAL" << std::endl;
}
comp_rect = cvRect( 0, 0, size.width, size.height );
color = CV_RGB(255,255,255);
//.........这里部分代码省略.........
示例13: while
void ObjectTester::RunVideoDemo()
{
GenericObjectDetector detector;
visualsearch::io::OpenCVCameraIO cam;
if( !cam.InitCamera() )
return;
//KinectDataMan kinectDM;
//if( !kinectDM.InitKinect() )
//return;
bool doRank = true;
// start fetching stream data
while(1)
{
Mat cimg, dmap;
//kinectDM.GetColorDepth(cimg, dmap);
cam.QueryNextFrame(visualsearch::io::STREAM_COLOR, cimg);
// resize image
Size newsz;
ToolFactory::compute_downsample_ratio(Size(cimg.cols, cimg.rows), 300, newsz);
resize(cimg, cimg, newsz);
//resize(dmap, dmap, newsz);
//normalize(dmap, dmap, 0, 255, NORM_MINMAX);
// get objects
vector<ImgWin> objwins, salwins;
if( !detector.ProposeObjects(cimg, dmap, objwins, salwins, doRank) )
continue;
//////////////////////////////////////////////////////////////////////////
// draw best k windows
int topK = MIN(6, objwins.size());
int objimgsz = newsz.height / topK;
int canvas_h = newsz.height;
int canvas_w = newsz.width + 10 + objimgsz*2;
Mat canvas(canvas_h, canvas_w, CV_8UC3);
canvas.setTo(Vec3b(0,0,0));
// get top windows
vector<Mat> detimgs(topK);
vector<Mat> salimgs(topK);
for (int i=0; i<topK; i++)
{
cimg(objwins[i]).copyTo(detimgs[i]);
resize(detimgs[i], detimgs[i], Size(objimgsz, objimgsz));
cimg(salwins[i]).copyTo(salimgs[i]);
resize(salimgs[i], salimgs[i], Size(objimgsz, objimgsz));
}
// draw boxes on input
Scalar objcolor(0, 255, 0);
Scalar salcolor(0, 0, 255);
for(int i=0; i<topK; i++)
{
//rectangle(cimg, objwins[i], objcolor);
rectangle(cimg, salwins[i], salcolor);
}
circle(cimg, Point(cimg.cols/2, cimg.rows/2), 2, CV_RGB(255,0,0));
// copy input image
cimg.copyTo(canvas(Rect(0, 0, cimg.cols, cimg.rows)));
// copy subimg
for (int i=0; i<detimgs.size(); i++)
{
Rect objbox(cimg.cols+10, i*objimgsz, objimgsz, objimgsz);
detimgs[i].copyTo(canvas(objbox));
Rect salbox(cimg.cols+10+objimgsz, i*objimgsz, objimgsz, objimgsz);
salimgs[i].copyTo(canvas(salbox));
}
resize(canvas, canvas, Size(canvas.cols*2, canvas.rows*2));
//if(doRank)
//putText(canvas, "Use Ranking", Point(50, 50), CV_FONT_HERSHEY_COMPLEX, 1, CV_RGB(255, 0, 0));
imshow("object proposals", canvas);
if( waitKey(10) == 'q' )
break;
}
}
示例14: putDistance
static void putDistance(IplImage *Image,
std::vector<cv_tracker::image_rect_ranged> objects,
int threshold_height,
const char* objectLabel)
{
char distance_string[32];
CvFont dfont;
float hscale = 0.7f;
float vscale = 0.7f;
float italicscale = 0.0f;
int thickness = 1;
CvFont dfont_label;
float hscale_label = 0.5f;
float vscale_label = 0.5f;
CvSize text_size;
int baseline = 0;
cvInitFont(&dfont_label, CV_FONT_HERSHEY_COMPLEX, hscale_label, vscale_label, italicscale, thickness, CV_AA);
cvGetTextSize(objectLabel,
&dfont_label,
&text_size,
&baseline);
for (unsigned int i=0; i<objects.size(); i++)
{
if (objects.at(i).rect.y > threshold_height) // temporal way to avoid drawing detections in the sky
{
if (!isNearlyNODATA(objects.at(i).range))
{
/* put label */
CvPoint labelOrg = cvPoint(objects.at(i).rect.x - OBJ_RECT_THICKNESS,
objects.at(i).rect.y - baseline - OBJ_RECT_THICKNESS);
cvRectangle(Image,
cvPoint(labelOrg.x + 0, labelOrg.y + baseline),
cvPoint(labelOrg.x + text_size.width, labelOrg.y - text_size.height),
CV_RGB(0, 0, 0), // label background is black
-1, 8, 0
);
cvPutText(Image,
objectLabel,
labelOrg,
&dfont_label,
CV_RGB(255, 255, 255) // label text color is white
);
/* put distance data */
cvRectangle(Image,
cv::Point(objects.at(i).rect.x + (objects.at(i).rect.width/2) - (((int)log10(objects.at(i).range/100)+1) * 5 + 45),
objects.at(i).rect.y + objects.at(i).rect.height + 5),
cv::Point(objects.at(i).rect.x + (objects.at(i).rect.width/2) + (((int)log10(objects.at(i).range/100)+1) * 8 + 38),
objects.at(i).rect.y + objects.at(i).rect.height + 30),
cv::Scalar(255,255,255),
-1);
cvInitFont (&dfont,
CV_FONT_HERSHEY_COMPLEX,
hscale,
vscale,
italicscale,
thickness,
CV_AA);
sprintf(distance_string, "%.2f m", objects.at(i).range / 100); //unit of length is meter
cvPutText(Image,
distance_string,
cvPoint(objects.at(i).rect.x + (objects.at(i).rect.width/2) - (((int)log10(objects.at(i).range/100)+1) * 5 + 40),
objects.at(i).rect.y + objects.at(i).rect.height + 25),
&dfont,
CV_RGB(255, 0, 0));
}
}
}
}
示例15: strcpy
/*!
Initialize the display size, position and title.
\param width, height : Width and height of the window.
\param x, y : The window is set at position x,y (column index, row index).
\param title : Window title.
*/
void
vpDisplayOpenCV::init(unsigned int width, unsigned int height,
int x, int y,
const char *title)
{
this->width = width;
this->height = height;
this->windowXPosition = x;
this->windowYPosition = y;
int flags = CV_WINDOW_AUTOSIZE;
if (title != NULL)
{
if (this->title != NULL)
{
delete [] this->title ;
this->title = NULL ;
}
this->title = new char[strlen(title) + 1] ;
strcpy(this->title, title) ;
}
else{
if (this->title != NULL)
{
delete [] this->title ;
this->title = NULL ;
}
this->title = new char[50] ;
sprintf(this->title,"Unnamed ViSP display <%02d>",count) ;
}
count++;
/* Create the window*/
window = cvNamedWindow( this->title, flags );
cvMoveWindow( this->title, x, y );
move = false;
lbuttondown = false;
mbuttondown = false;
rbuttondown = false;
lbuttonup = false;
mbuttonup = false;
rbuttonup = false;
cvSetMouseCallback( this->title, on_mouse, this );
/* Create background pixmap */
// background = cvCreateImage(cvSize((int)width,(int)height),IPL_DEPTH_8U,3);
//
// cvShowImage( this->title,background);
col = new CvScalar[vpColor::id_unknown] ;
/* Create color */
vpColor pcolor; // Predefined colors
pcolor = vpColor::lightBlue;
col[vpColor::id_lightBlue] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::blue;
col[vpColor::id_blue] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::darkBlue;
col[vpColor::id_darkBlue] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::lightRed;
col[vpColor::id_lightRed] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::red;
col[vpColor::id_red] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::darkRed;
col[vpColor::id_darkRed] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::lightGreen;
col[vpColor::id_lightGreen] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::green;
col[vpColor::id_green] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::darkGreen;
col[vpColor::id_darkGreen] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::yellow;
col[vpColor::id_yellow] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::cyan;
col[vpColor::id_cyan] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::orange;
col[vpColor::id_orange] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::purple;
col[vpColor::id_purple] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::white;
col[vpColor::id_white] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::black;
col[vpColor::id_black] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::lightGray;
col[vpColor::id_lightGray] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::gray;
col[vpColor::id_gray] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
pcolor = vpColor::darkGray;
col[vpColor::id_darkGray] = CV_RGB(pcolor.R, pcolor.G, pcolor.B) ;
font = new CvFont;
cvInitFont( font, CV_FONT_HERSHEY_PLAIN, 0.70f,0.70f);
CvSize fontSize;
int baseline;
//.........这里部分代码省略.........