本文整理汇总了C++中CV_MAKETYPE函数的典型用法代码示例。如果您正苦于以下问题:C++ CV_MAKETYPE函数的具体用法?C++ CV_MAKETYPE怎么用?C++ CV_MAKETYPE使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了CV_MAKETYPE函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: type
UMat& UMat::setTo(InputArray _value, InputArray _mask)
{
bool haveMask = !_mask.empty();
#ifdef HAVE_OPENCL
int tp = type(), cn = CV_MAT_CN(tp);
if( dims <= 2 && cn <= 4 && CV_MAT_DEPTH(tp) < CV_64F && ocl::useOpenCL() )
{
Mat value = _value.getMat();
CV_Assert( checkScalar(value, type(), _value.kind(), _InputArray::UMAT) );
double buf[4] = { 0, 0, 0, 0 };
convertAndUnrollScalar(value, tp, (uchar *)buf, 1);
int scalarcn = cn == 3 ? 4 : cn, rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
String opts = format("-D dstT=%s -D rowsPerWI=%d -D dstST=%s -D dstT1=%s -D cn=%d",
ocl::memopTypeToStr(tp), rowsPerWI,
ocl::memopTypeToStr(CV_MAKETYPE(tp, scalarcn)),
ocl::memopTypeToStr(CV_MAT_DEPTH(tp)), cn);
ocl::Kernel setK(haveMask ? "setMask" : "set", ocl::core::copyset_oclsrc, opts);
if( !setK.empty() )
{
ocl::KernelArg scalararg(0, 0, 0, 0, buf, CV_ELEM_SIZE1(tp) * scalarcn);
UMat mask;
if( haveMask )
{
mask = _mask.getUMat();
CV_Assert( mask.size() == size() && mask.type() == CV_8UC1 );
ocl::KernelArg maskarg = ocl::KernelArg::ReadOnlyNoSize(mask),
dstarg = ocl::KernelArg::ReadWrite(*this);
setK.args(maskarg, dstarg, scalararg);
}
else
{
ocl::KernelArg dstarg = ocl::KernelArg::WriteOnly(*this);
setK.args(dstarg, scalararg);
}
size_t globalsize[] = { cols, (rows + rowsPerWI - 1) / rowsPerWI };
if( setK.run(2, globalsize, NULL, false) )
return *this;
}
}
#endif
Mat m = getMat(haveMask ? ACCESS_RW : ACCESS_WRITE);
m.setTo(_value, _mask);
return *this;
}
示例2: matFromImage
// Converts a ROS Image to a cv::Mat by sharing the data or chaning its endianness if needed
cv::Mat matFromImage(const sensor_msgs::Image& source)
{
int source_type = getCvType(source.encoding);
int byte_depth = enc::bitDepth(source.encoding) / 8;
int num_channels = enc::numChannels(source.encoding);
if (source.step < source.width * byte_depth * num_channels)
{
std::stringstream ss;
ss << "Image is wrongly formed: step < width * byte_depth * num_channels or " << source.step << " != " <<
source.width << " * " << byte_depth << " * " << num_channels;
throw Exception(ss.str());
}
if (source.height * source.step != source.data.size())
{
std::stringstream ss;
ss << "Image is wrongly formed: height * step != size or " << source.height << " * " <<
source.step << " != " << source.data.size();
throw Exception(ss.str());
}
// If the endianness is the same as locally, share the data
cv::Mat mat(source.height, source.width, source_type, const_cast<uchar*>(&source.data[0]), source.step);
if ((boost::endian::order::native == boost::endian::order::big && source.is_bigendian) ||
(boost::endian::order::native == boost::endian::order::little && !source.is_bigendian) ||
byte_depth == 1)
return mat;
// Otherwise, reinterpret the data as bytes and switch the channels accordingly
mat = cv::Mat(source.height, source.width, CV_MAKETYPE(CV_8U, num_channels*byte_depth),
const_cast<uchar*>(&source.data[0]), source.step);
cv::Mat mat_swap(source.height, source.width, mat.type());
std::vector<int> fromTo;
fromTo.reserve(num_channels*byte_depth);
for(int i = 0; i < num_channels; ++i)
for(int j = 0; j < byte_depth; ++j)
{
fromTo.push_back(byte_depth*i + j);
fromTo.push_back(byte_depth*i + byte_depth - 1 - j);
}
cv::mixChannels(std::vector<cv::Mat>(1, mat), std::vector<cv::Mat>(1, mat_swap), fromTo);
// Interpret mat_swap back as the proper type
mat_swap = cv::Mat(source.height, source.width, source_type, mat_swap.data, mat_swap.step);
return mat_swap;
}
示例3: ocl_pyrUp
static bool ocl_pyrUp( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType)
{
int type = _src.type(), depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type);
if (channels > 4 || borderType != BORDER_DEFAULT)
return false;
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if (depth == CV_64F && !doubleSupport)
return false;
Size ssize = _src.size();
if ((_dsz.area() != 0) && (_dsz != Size(ssize.width * 2, ssize.height * 2)))
return false;
UMat src = _src.getUMat();
Size dsize = Size(ssize.width * 2, ssize.height * 2);
_dst.create( dsize, src.type() );
UMat dst = _dst.getUMat();
int float_depth = depth == CV_64F ? CV_64F : CV_32F;
const int local_size = 16;
char cvt[2][50];
String buildOptions = format(
"-D T=%s -D FT=%s -D convertToT=%s -D convertToFT=%s%s "
"-D T1=%s -D cn=%d -D LOCAL_SIZE=%d",
ocl::typeToStr(type), ocl::typeToStr(CV_MAKETYPE(float_depth, channels)),
ocl::convertTypeStr(float_depth, depth, channels, cvt[0]),
ocl::convertTypeStr(depth, float_depth, channels, cvt[1]),
doubleSupport ? " -D DOUBLE_SUPPORT" : "",
ocl::typeToStr(depth), channels, local_size
);
size_t globalThreads[2] = { dst.cols, dst.rows };
size_t localThreads[2] = { local_size, local_size };
ocl::Kernel k;
if (ocl::Device::getDefault().isIntel() && channels == 1)
{
k.create("pyrUp_unrolled", ocl::imgproc::pyr_up_oclsrc, buildOptions);
globalThreads[0] = dst.cols/2; globalThreads[1] = dst.rows/2;
}
else
k.create("pyrUp", ocl::imgproc::pyr_up_oclsrc, buildOptions);
if (k.empty())
return false;
k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst));
return k.run(2, globalThreads, localThreads, false);
}
示例4: rb_query
/*
* call-seq:
* query -> IplImage or nil
*
* Grabs and returns a frame camera or file. Just a combination of grab and retrieve in one call.
*/
VALUE
rb_query(VALUE self)
{
IplImage *frame = cvQueryFrame(CVCAPTURE(self));
if(!frame)
return Qnil;
VALUE image = cIplImage::new_object(cvSize(frame->width, frame->height), CV_MAKETYPE(CV_8U, frame->nChannels));
if (frame->origin == IPL_ORIGIN_TL) {
cvCopy(frame, CVARR(image));
}
else {
cvFlip(frame, CVARR(image));
}
return image;
}
示例5:
bool KGDAL2CV::CheckDataType(const GDALDataType& gdalDataType, cv::Mat img)
{
int TypeMap_GDAL2_0[GDT_TypeCount] = { CV_USRTYPE1, CV_8U, CV_16U, CV_16S, CV_32S, CV_32S, CV_32F, CV_64F, CV_USRTYPE1, CV_USRTYPE1, CV_USRTYPE1, CV_USRTYPE1};
int imgType = img.type();
if (imgType == CV_MAKETYPE(TypeMap_GDAL2_0[gdalDataType], img.channels()))
{
if (gdalDataType == GDT_UInt32) std::cout << "cv::Mat doesn't support datatype: CV_32U!" << std::endl;
if (TypeMap_GDAL2_0[gdalDataType] == CV_USRTYPE1) std::cout << "user define datatype may be unmatched!" << std::endl;
return true;
}
std::cout << "Warning: use the different Data Type between cv::Mat and GDAL!\r\n"
"\tproper range cast may be used!" << std::endl;
return false;
}
示例6: ocl_pyrDown
static bool ocl_pyrDown( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType)
{
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if (cn > 4 || (depth == CV_64F && !doubleSupport))
return false;
Size ssize = _src.size();
Size dsize = _dsz.area() == 0 ? Size((ssize.width + 1) / 2, (ssize.height + 1) / 2) : _dsz;
if (dsize.height < 2 || dsize.width < 2)
return false;
CV_Assert( ssize.width > 0 && ssize.height > 0 &&
std::abs(dsize.width*2 - ssize.width) <= 2 &&
std::abs(dsize.height*2 - ssize.height) <= 2 );
UMat src = _src.getUMat();
_dst.create( dsize, src.type() );
UMat dst = _dst.getUMat();
int float_depth = depth == CV_64F ? CV_64F : CV_32F;
const int local_size = 256;
int kercn = 1;
if (depth == CV_8U && float_depth == CV_32F && cn == 1 && ocl::Device::getDefault().isIntel())
kercn = 4;
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP",
"BORDER_REFLECT_101" };
char cvt[2][50];
String buildOptions = format(
"-D T=%s -D FT=%s -D convertToT=%s -D convertToFT=%s%s "
"-D T1=%s -D cn=%d -D kercn=%d -D fdepth=%d -D %s -D LOCAL_SIZE=%d",
ocl::typeToStr(type), ocl::typeToStr(CV_MAKETYPE(float_depth, cn)),
ocl::convertTypeStr(float_depth, depth, cn, cvt[0]),
ocl::convertTypeStr(depth, float_depth, cn, cvt[1]),
doubleSupport ? " -D DOUBLE_SUPPORT" : "", ocl::typeToStr(depth),
cn, kercn, float_depth, borderMap[borderType], local_size
);
ocl::Kernel k("pyrDown", ocl::imgproc::pyr_down_oclsrc, buildOptions);
if (k.empty())
return false;
k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst));
size_t localThreads[2] = { local_size/kercn, 1 };
size_t globalThreads[2] = { (src.cols + (kercn-1))/kercn, (dst.rows + 1) / 2 };
return k.run(2, globalThreads, localThreads, false);
}
示例7: types
std::vector<int> types(int depth_start, int depth_end, int cn_start, int cn_end)
{
std::vector<int> v;
v.reserve((depth_end - depth_start + 1) * (cn_end - cn_start + 1));
for (int depth = depth_start; depth <= depth_end; ++depth)
{
for (int cn = cn_start; cn <= cn_end; ++cn)
{
v.push_back(CV_MAKETYPE(depth, cn));
}
}
return v;
}
示例8: CV_MAT_DEPTH
void FilterBase::apply(cv::InputArray _src, cv::OutputArray _dst, const int &ddepth){
int stype = _src.type();
int dcn = _src.channels();
int depth = CV_MAT_DEPTH(stype);
if (0 <= ddepth)
depth = ddepth;
Mat src, dst;
src = _src.getMat();
Size sz = src.size();
_dst.create(sz, CV_MAKETYPE(depth, dcn));
dst = _dst.getMat();
int imageWidth = src.rows;
int imageHeight = src.cols;
Mat srcChannels[3];
split(src, srcChannels);
int margineWidth = kernel.cols / 2;
int margineHeight = kernel.rows / 2;
double kernelElemCount = (double)(kernel.cols * kernel.rows);
for(int ch = 0; ch < dcn; ++ch){
for(int y = 0; y < imageHeight; ++y){
Vec3d *ptr = dst.ptr<Vec3d>(y);
for(int x = 0; x < imageWidth; ++x){
if (isEdge(x, y, imageWidth, imageHeight, margineWidth, margineWidth)){
ptr[x][ch]
= calcKernelOutputAtEdge(srcChannels[ch],
kernel, x, y,
imageWidth, imageHeight,
margineWidth, margineHeight);
}else{
ptr[x][ch]
= calcKernelOutput(srcChannels[ch],
kernel, x, y,
margineWidth, margineHeight,
kernelElemCount);
}
}
}
}
}
示例9: mxCreateNumericArray
MxArray::MxArray(const cv::Mat& mat, mxClassID classid, bool transpose)
{
// handle special case of empty input Mat by creating an empty array
classid = (classid == mxUNKNOWN_CLASS) ? ClassIDOf[mat.depth()] : classid;
if (mat.empty()) {
p_ = mxCreateNumericArray(0, 0, classid, mxREAL);
if (!p_)
mexErrMsgIdAndTxt("mexopencv:error", "Allocation error");
return;
}
// transpose cv::Mat if needed
cv::Mat input(mat);
if (input.dims == 2 && transpose)
input = input.t();
// Create a new mxArray (of the specified classID) equivalent to cv::Mat
const mwSize nchannels = input.channels();
const int* dims_ = input.size;
std::vector<mwSize> d(dims_, dims_ + input.dims);
d.push_back(nchannels);
std::swap(d[0], d[1]);
if (classid == mxLOGICAL_CLASS) {
// OpenCV's logical true is any nonzero, while MATLAB's true is 1.
cv::compare(input, 0, input, cv::CMP_NE);
input.setTo(1, input);
p_ = mxCreateLogicalArray(d.size(), &d[0]);
}
else
p_ = mxCreateNumericArray(d.size(), &d[0], classid, mxREAL);
if (!p_)
mexErrMsgIdAndTxt("mexopencv:error", "Allocation error");
// split input cv::Mat into several single-channel arrays
std::vector<cv::Mat> channels;
channels.reserve(nchannels);
cv::split(input, channels);
// Copy each channel from Mat to mxArray (converting to specified classid),
// as in: p_(:,:,i) <- cast_to_classid_type(channels[i])
std::vector<mwSize> si(d.size(), 0); // subscript index
const int type = CV_MAKETYPE(DepthOf[classid], 1); // destination type
for (mwIndex i = 0; i < nchannels; ++i) {
si[si.size() - 1] = i; // last dim is a channel index
void *ptr = reinterpret_cast<void*>(
reinterpret_cast<size_t>(mxGetData(p_)) +
mxGetElementSize(p_) * subs(si)); // ptr to i-th channel data
cv::Mat m(input.dims, dims_, type, ptr); // only creates Mat header
channels[i].convertTo(m, type); // Write to mxArray through m
}
}
示例10: type
void UMat::convertTo(OutputArray _dst, int _type, double alpha, double beta) const
{
bool noScale = std::fabs(alpha - 1) < DBL_EPSILON && std::fabs(beta) < DBL_EPSILON;
int stype = type(), cn = CV_MAT_CN(stype);
if( _type < 0 )
_type = _dst.fixedType() ? _dst.type() : stype;
else
_type = CV_MAKETYPE(CV_MAT_DEPTH(_type), cn);
int sdepth = CV_MAT_DEPTH(stype), ddepth = CV_MAT_DEPTH(_type);
if( sdepth == ddepth && noScale )
{
copyTo(_dst);
return;
}
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
bool needDouble = sdepth == CV_64F || ddepth == CV_64F;
if( dims <= 2 && cn && _dst.isUMat() && ocl::useOpenCL() &&
((needDouble && doubleSupport) || !needDouble) )
{
char cvt[40];
ocl::Kernel k("convertTo", ocl::core::convert_oclsrc,
format("-D srcT=%s -D dstT=%s -D convertToDT=%s%s", ocl::typeToStr(sdepth),
ocl::typeToStr(ddepth), ocl::convertTypeStr(CV_32F, ddepth, 1, cvt),
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
if (!k.empty())
{
UMat src = *this;
_dst.create( size(), _type );
UMat dst = _dst.getUMat();
float alphaf = (float)alpha, betaf = (float)beta;
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst, cn), alphaf, betaf);
size_t globalsize[2] = { dst.cols * cn, dst.rows };
if (k.run(2, globalsize, NULL, false))
return;
}
}
Mat m = getMat(ACCESS_READ);
m.convertTo(_dst, _type, alpha, beta);
}
示例11: mxCreateNumericArray
MxArray::MxArray(const cv::Mat& mat, mxClassID classid, bool transpose)
{
if (mat.empty())
{
p_ = mxCreateNumericArray(0, 0, mxDOUBLE_CLASS, mxREAL);
if (!p_)
mexErrMsgIdAndTxt("mexopencv:error", "Allocation error");
return;
}
cv::Mat input = (mat.dims == 2 && transpose) ? mat.t() : mat;
// Create a new mxArray.
const int nchannels = input.channels();
const int* dims_ = input.size;
std::vector<mwSize> d(dims_, dims_ + input.dims);
d.push_back(nchannels);
classid = (classid == mxUNKNOWN_CLASS)
? ClassIDOf[input.depth()] : classid;
std::swap(d[0], d[1]);
if (classid == mxLOGICAL_CLASS)
{
// OpenCV's logical true is any nonzero while matlab's true is 1.
cv::compare(input, 0, input, cv::CMP_NE);
input.setTo(1, input);
p_ = mxCreateLogicalArray(d.size(), &d[0]);
}
else {
p_ = mxCreateNumericArray(d.size(), &d[0], classid, mxREAL);
}
if (!p_)
mexErrMsgIdAndTxt("mexopencv:error", "Allocation error");
// Copy each channel.
std::vector<cv::Mat> channels;
split(input, channels);
std::vector<mwSize> si(d.size(), 0); // subscript index.
int type = CV_MAKETYPE(DepthOf[classid], 1); // destination type.
for (int i = 0; i < nchannels; ++i)
{
si[si.size() - 1] = i; // last dim is a channel index.
void *ptr = reinterpret_cast<void*>(
reinterpret_cast<size_t>(mxGetData(p_)) +
mxGetElementSize(p_) * subs(si));
cv::Mat m(input.dims, dims_, type, ptr);
channels[i].convertTo(m, type); // Write to mxArray through m.
}
}
示例12: parse_path
/**
* Load an image in the file of the proprietary format.
* The file name describes the image configuration as:
* *-(width)x(height)x(num_channels)-(opencv_depth_code).bin
* There is no header in the file. The file is a binary dump of an OpenCV cv::Mat data.
* For the better portability, an existing format can be used to carry image data.
*/
cv::Mat cv_subtractor::read_binary_image_file(const std::string filename) {
std::vector<int> tokens;
{ // Extract the information on the image from the file name
const std::vector<char> delims = {'-', 'x','x','-','.'};
std::string dir;
std::string basename;
parse_path(filename, dir, basename);
tokens = get_tokens(basename, delims);
if (tokens.size() != delims.size()) {
return cv::Mat();
}
}
std::ifstream file(filename, std::ios::binary);
if (!file.good()) {
return cv::Mat();
}
file.unsetf(std::ios::skipws);
{ // Check file size
const size_t image_byte_size
= tokens[1] * tokens[2] * tokens[3] * CV_ELEM_SIZE(tokens[4]);
file.seekg(0, std::ios::end);
const size_t file_size = static_cast<size_t>(file.tellg());
if (image_byte_size != file_size) {
return cv::Mat();
}
}
// Construct an image data structure
cv::Mat image(tokens[1], tokens[2], CV_MAKETYPE(tokens[4], tokens[3]));
// Reset the file pointer
file.seekg(0, std::ios::beg);
// Load the image from the file
std::copy(std::istream_iterator<unsigned char>(file),
std::istream_iterator<unsigned char>(),
reinterpret_cast<unsigned char*>(image.data));
return image;
}
示例13: CV_MAT_DEPTH
void cv::Scharr( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
double scale, double delta, int borderType )
{
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
if (ddepth < 0)
ddepth = sdepth;
int dtype = CV_MAKETYPE(ddepth, cn);
_dst.create( _src.size(), dtype );
#ifdef HAVE_TEGRA_OPTIMIZATION
if (tegra::useTegra() && scale == 1.0 && delta == 0)
{
Mat src = _src.getMat(), dst = _dst.getMat();
if (tegra::scharr(src, dst, dx, dy, borderType))
return;
}
#endif
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
CV_IPP_CHECK()
{
if (IPPDerivScharr(_src, _dst, ddepth, dx, dy, scale, delta, borderType))
{
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
}
#endif
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
Mat kx, ky;
getScharrKernels( kx, ky, dx, dy, false, ktype );
if( scale != 1 )
{
// usually the smoothing part is the slowest to compute,
// so try to scale it instead of the faster differenciating part
if( dx == 0 )
kx *= scale;
else
ky *= scale;
}
sepFilter2D( _src, _dst, ddepth, kx, ky, Point(-1, -1), delta, borderType );
}
示例14: CV_Assert
cv::Mat cv::viz::vtkTrajectorySource::ExtractPoints(InputArray _traj)
{
CV_Assert(_traj.kind() == _InputArray::STD_VECTOR || _traj.kind() == _InputArray::MAT);
CV_Assert(_traj.type() == CV_32FC(16) || _traj.type() == CV_64FC(16));
Mat points(1, (int)_traj.total(), CV_MAKETYPE(_traj.depth(), 3));
const Affine3d* dpath = _traj.getMat().ptr<Affine3d>();
const Affine3f* fpath = _traj.getMat().ptr<Affine3f>();
if (_traj.depth() == CV_32F)
for(int i = 0; i < points.cols; ++i)
points.at<Vec3f>(i) = fpath[i].translation();
if (_traj.depth() == CV_64F)
for(int i = 0; i < points.cols; ++i)
points.at<Vec3d>(i) = dpath[i].translation();
return points;
}
示例15: GPUSender
GPUSender(sensor_msgs::ImageConstPtr example, std::string encoding,
ros::Publisher* pub) :
image_msg_(new sensor_msgs::Image()),
publisher_(pub)
{
int bitdepth, channels;
bitdepth = sensor_msgs::image_encodings::bitDepth(encoding);
channels = sensor_msgs::image_encodings::numChannels(encoding);
image_msg_->header = example->header;
image_msg_->height = example->height;
image_msg_->width = example->width;
image_msg_->encoding = encoding;
image_msg_->step = example->width*bitdepth*channels/8;
image_msg_->data.resize( image_msg_->height * image_msg_->step );
image_data_ = cv::Mat(image_msg_->height, image_msg_->width,
CV_MAKETYPE(CV_8U, channels),
&image_msg_->data[0], image_msg_->step);
cv::cuda::registerPageLocked(image_data_);
}