本文整理汇总了C++中BNerr函数的典型用法代码示例。如果您正苦于以下问题:C++ BNerr函数的具体用法?C++ BNerr怎么用?C++ BNerr使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了BNerr函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: BN_generate_dsa_nonce
/*
* BN_generate_dsa_nonce generates a random number 0 <= out < range. Unlike
* BN_rand_range, it also includes the contents of |priv| and |message| in
* the generation so that an RNG failure isn't fatal as long as |priv|
* remains secret. This is intended for use in DSA and ECDSA where an RNG
* weakness leads directly to private key exposure unless this function is
* used.
*/
int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range,
const BIGNUM *priv, const unsigned char *message,
size_t message_len, BN_CTX *ctx)
{
SHA512_CTX sha;
/*
* We use 512 bits of random data per iteration to ensure that we have at
* least |range| bits of randomness.
*/
unsigned char random_bytes[64];
unsigned char digest[SHA512_DIGEST_LENGTH];
unsigned done, todo;
/* We generate |range|+8 bytes of random output. */
const unsigned num_k_bytes = BN_num_bytes(range) + 8;
unsigned char private_bytes[96];
unsigned char *k_bytes;
int ret = 0;
k_bytes = OPENSSL_malloc(num_k_bytes);
if (!k_bytes)
goto err;
/* We copy |priv| into a local buffer to avoid exposing its length. */
todo = sizeof(priv->d[0]) * priv->top;
if (todo > sizeof(private_bytes)) {
/*
* No reasonable DSA or ECDSA key should have a private key this
* large and we don't handle this case in order to avoid leaking the
* length of the private key.
*/
BNerr(BN_F_BN_GENERATE_DSA_NONCE, BN_R_PRIVATE_KEY_TOO_LARGE);
goto err;
}
memcpy(private_bytes, priv->d, todo);
memset(private_bytes + todo, 0, sizeof(private_bytes) - todo);
for (done = 0; done < num_k_bytes;) {
if (RAND_bytes(random_bytes, sizeof(random_bytes)) != 1)
goto err;
SHA512_Init(&sha);
SHA512_Update(&sha, &done, sizeof(done));
SHA512_Update(&sha, private_bytes, sizeof(private_bytes));
SHA512_Update(&sha, message, message_len);
SHA512_Update(&sha, random_bytes, sizeof(random_bytes));
SHA512_Final(digest, &sha);
todo = num_k_bytes - done;
if (todo > SHA512_DIGEST_LENGTH)
todo = SHA512_DIGEST_LENGTH;
memcpy(k_bytes + done, digest, todo);
done += todo;
}
if (!BN_bin2bn(k_bytes, num_k_bytes, out))
goto err;
if (BN_mod(out, out, range, ctx) != 1)
goto err;
ret = 1;
err:
OPENSSL_free(k_bytes);
return ret;
}
示例2: BN_generate_prime_ex
int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
{
BIGNUM *t;
int found=0;
int i,j,c1=0;
BN_CTX *ctx;
int checks = BN_prime_checks_for_size(bits);
if (bits < 2)
{
/* There are no prime numbers this small. */
BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
return 0;
}
else if (bits == 2 && safe)
{
/* The smallest safe prime (7) is three bits. */
BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
return 0;
}
ctx=BN_CTX_new();
if (ctx == NULL) goto err;
BN_CTX_start(ctx);
t = BN_CTX_get(ctx);
if(!t) goto err;
loop:
/* make a random number and set the top and bottom bits */
if (add == NULL)
{
if (!probable_prime(ret,bits)) goto err;
}
else
{
if (safe)
{
if (!probable_prime_dh_safe(ret,bits,add,rem,ctx))
goto err;
}
else
{
if (!bn_probable_prime_dh(ret,bits,add,rem,ctx))
goto err;
}
}
/* if (BN_mod_word(ret,(BN_ULONG)3) == 1) goto loop; */
if(!BN_GENCB_call(cb, 0, c1++))
/* aborted */
goto err;
if (!safe)
{
i=BN_is_prime_fasttest_ex(ret,checks,ctx,0,cb);
if (i == -1) goto err;
if (i == 0) goto loop;
}
else
{
/* for "safe prime" generation,
* check that (p-1)/2 is prime.
* Since a prime is odd, We just
* need to divide by 2 */
if (!BN_rshift1(t,ret)) goto err;
for (i=0; i<checks; i++)
{
j=BN_is_prime_fasttest_ex(ret,1,ctx,0,cb);
if (j == -1) goto err;
if (j == 0) goto loop;
j=BN_is_prime_fasttest_ex(t,1,ctx,0,cb);
if (j == -1) goto err;
if (j == 0) goto loop;
if(!BN_GENCB_call(cb, 2, c1-1))
goto err;
/* We have a safe prime test pass */
}
}
/* we have a prime :-) */
found = 1;
err:
if (ctx != NULL)
{
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
bn_check_top(ret);
return found;
}
示例3: BN_mod_exp2_mont
int BN_mod_exp2_mont(BIGNUM *rr, BIGNUM *a1, BIGNUM *p1, BIGNUM *a2,
BIGNUM *p2, BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
{
int i,j,k,bits,bits1,bits2,ret=0,wstart,wend,window,xvalue,yvalue;
int start=1,ts=0,x,y;
BIGNUM *d,*aa1,*aa2,*r;
BIGNUM val[EXP2_TABLE_SIZE][EXP2_TABLE_SIZE];
BN_MONT_CTX *mont=NULL;
bn_check_top(a1);
bn_check_top(p1);
bn_check_top(a2);
bn_check_top(p2);
bn_check_top(m);
if (!(m->d[0] & 1))
{
BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS);
return(0);
}
bits1=BN_num_bits(p1);
bits2=BN_num_bits(p2);
if ((bits1 == 0) && (bits2 == 0))
{
BN_one(rr);
return(1);
}
BN_CTX_start(ctx);
d = BN_CTX_get(ctx);
r = BN_CTX_get(ctx);
if (d == NULL || r == NULL) goto err;
bits=(bits1 > bits2)?bits1:bits2;
/* If this is not done, things will break in the montgomery
* part */
if (in_mont != NULL)
mont=in_mont;
else
{
if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
if (!BN_MONT_CTX_set(mont,m,ctx)) goto err;
}
BN_init(&(val[0][0]));
BN_init(&(val[1][1]));
BN_init(&(val[0][1]));
BN_init(&(val[1][0]));
ts=1;
if (BN_ucmp(a1,m) >= 0)
{
BN_mod(&(val[1][0]),a1,m,ctx);
aa1= &(val[1][0]);
}
else
aa1=a1;
if (BN_ucmp(a2,m) >= 0)
{
BN_mod(&(val[0][1]),a2,m,ctx);
aa2= &(val[0][1]);
}
else
aa2=a2;
if (!BN_to_montgomery(&(val[1][0]),aa1,mont,ctx)) goto err;
if (!BN_to_montgomery(&(val[0][1]),aa2,mont,ctx)) goto err;
if (!BN_mod_mul_montgomery(&(val[1][1]),
&(val[1][0]),&(val[0][1]),mont,ctx))
goto err;
#if 0
if (bits <= 20) /* This is probably 3 or 0x10001, so just do singles */
window=1;
else if (bits > 250)
window=5; /* max size of window */
else if (bits >= 120)
window=4;
else
window=3;
#else
window=EXP2_TABLE_BITS;
#endif
k=1<<window;
for (x=0; x<k; x++)
{
if (x >= 2)
{
BN_init(&(val[x][0]));
BN_init(&(val[x][1]));
if (!BN_mod_mul_montgomery(&(val[x][0]),
&(val[1][0]),&(val[x-1][0]),mont,ctx)) goto err;
if (!BN_mod_mul_montgomery(&(val[x][1]),
&(val[1][0]),&(val[x-1][1]),mont,ctx)) goto err;
}
for (y=2; y<k; y++)
{
BN_init(&(val[x][y]));
if (!BN_mod_mul_montgomery(&(val[x][y]),
//.........这里部分代码省略.........
示例4: BN_div
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
BN_CTX *ctx)
{
int i, nm, nd;
int ret = 0;
BIGNUM *D;
bn_check_top(m);
bn_check_top(d);
if (BN_is_zero(d)) {
BNerr(BN_F_BN_DIV, BN_R_DIV_BY_ZERO);
return (0);
}
if (BN_ucmp(m, d) < 0) {
if (rem != NULL) {
if (BN_copy(rem, m) == NULL)
return (0);
}
if (dv != NULL)
BN_zero(dv);
return (1);
}
BN_CTX_start(ctx);
D = BN_CTX_get(ctx);
if (dv == NULL)
dv = BN_CTX_get(ctx);
if (rem == NULL)
rem = BN_CTX_get(ctx);
if (D == NULL || dv == NULL || rem == NULL)
goto end;
nd = BN_num_bits(d);
nm = BN_num_bits(m);
if (BN_copy(D, d) == NULL)
goto end;
if (BN_copy(rem, m) == NULL)
goto end;
/*
* The next 2 are needed so we can do a dv->d[0]|=1 later since
* BN_lshift1 will only work once there is a value :-)
*/
BN_zero(dv);
if (bn_wexpand(dv, 1) == NULL)
goto end;
dv->top = 1;
if (!BN_lshift(D, D, nm - nd))
goto end;
for (i = nm - nd; i >= 0; i--) {
if (!BN_lshift1(dv, dv))
goto end;
if (BN_ucmp(rem, D) >= 0) {
dv->d[0] |= 1;
if (!BN_usub(rem, rem, D))
goto end;
}
/* CAN IMPROVE (and have now :=) */
if (!BN_rshift1(D, D))
goto end;
}
rem->neg = BN_is_zero(rem) ? 0 : m->neg;
dv->neg = m->neg ^ d->neg;
ret = 1;
end:
BN_CTX_end(ctx);
return (ret);
}
示例5: bn_rand_range
/* random number r: 0 <= r < range */
static int bn_rand_range(int pseudo, BIGNUM *r, const BIGNUM *range)
{
int (*bn_rand)(BIGNUM *, int, int, int) = pseudo ? BN_pseudo_rand : BN_rand;
int n;
int count = 100;
if (range->neg || BN_is_zero(range))
{
BNerr(BN_F_BN_RAND_RANGE, BN_R_INVALID_RANGE);
return 0;
}
n = BN_num_bits(range); /* n > 0 */
/* BN_is_bit_set(range, n - 1) always holds */
if (n == 1)
BN_zero(r);
else if (!BN_is_bit_set(range, n - 2) && !BN_is_bit_set(range, n - 3))
{
/* range = 100..._2,
* so 3*range (= 11..._2) is exactly one bit longer than range */
do
{
if (!bn_rand(r, n + 1, -1, 0)) return 0;
/* If r < 3*range, use r := r MOD range
* (which is either r, r - range, or r - 2*range).
* Otherwise, iterate once more.
* Since 3*range = 11..._2, each iteration succeeds with
* probability >= .75. */
if (BN_cmp(r ,range) >= 0)
{
if (!BN_sub(r, r, range)) return 0;
if (BN_cmp(r, range) >= 0)
if (!BN_sub(r, r, range)) return 0;
}
if (!--count)
{
BNerr(BN_F_BN_RAND_RANGE, BN_R_TOO_MANY_ITERATIONS);
return 0;
}
}
while (BN_cmp(r, range) >= 0);
}
else
{
do
{
/* range = 11..._2 or range = 101..._2 */
if (!bn_rand(r, n, -1, 0)) return 0;
if (!--count)
{
BNerr(BN_F_BN_RAND_RANGE, BN_R_TOO_MANY_ITERATIONS);
return 0;
}
}
while (BN_cmp(r, range) >= 0);
}
bn_check_top(r);
return 1;
}
示例6: BN_div
/* BN_div computes dv := num / divisor, rounding towards
* zero, and sets up rm such that dv*divisor + rm = num holds.
* Thus:
* dv->neg == num->neg ^ divisor->neg (unless the result is zero)
* rm->neg == num->neg (unless the remainder is zero)
* If 'dv' or 'rm' is NULL, the respective value is not returned.
*/
int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
BN_CTX *ctx)
{
int norm_shift,i,loop;
BIGNUM *tmp,wnum,*snum,*sdiv,*res;
BN_ULONG *resp,*wnump;
BN_ULONG d0,d1;
int num_n,div_n;
int no_branch=0;
/* Invalid zero-padding would have particularly bad consequences
* so don't just rely on bn_check_top() here
* (bn_check_top() works only for BN_DEBUG builds) */
if ((num->top > 0 && num->d[num->top - 1] == 0) ||
(divisor->top > 0 && divisor->d[divisor->top - 1] == 0))
{
BNerr(BN_F_BN_DIV,BN_R_NOT_INITIALIZED);
return 0;
}
bn_check_top(num);
bn_check_top(divisor);
if ((BN_get_flags(num, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(divisor, BN_FLG_CONSTTIME) != 0))
{
no_branch=1;
}
bn_check_top(dv);
bn_check_top(rm);
/* bn_check_top(num); */ /* 'num' has been checked already */
/* bn_check_top(divisor); */ /* 'divisor' has been checked already */
if (BN_is_zero(divisor))
{
BNerr(BN_F_BN_DIV,BN_R_DIV_BY_ZERO);
return(0);
}
if (!no_branch && BN_ucmp(num,divisor) < 0)
{
if (rm != NULL)
{ if (BN_copy(rm,num) == NULL) return(0); }
if (dv != NULL) BN_zero(dv);
return(1);
}
BN_CTX_start(ctx);
tmp=BN_CTX_get(ctx);
snum=BN_CTX_get(ctx);
sdiv=BN_CTX_get(ctx);
if (dv == NULL)
res=BN_CTX_get(ctx);
else res=dv;
if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL)
goto err;
/* First we normalise the numbers */
norm_shift=BN_BITS2-((BN_num_bits(divisor))%BN_BITS2);
if (!(BN_lshift(sdiv,divisor,norm_shift))) goto err;
sdiv->neg=0;
norm_shift+=BN_BITS2;
if (!(BN_lshift(snum,num,norm_shift))) goto err;
snum->neg=0;
if (no_branch)
{
/* Since we don't know whether snum is larger than sdiv,
* we pad snum with enough zeroes without changing its
* value.
*/
if (snum->top <= sdiv->top+1)
{
if (bn_wexpand(snum, sdiv->top + 2) == NULL) goto err;
for (i = snum->top; i < sdiv->top + 2; i++) snum->d[i] = 0;
snum->top = sdiv->top + 2;
}
else
{
if (bn_wexpand(snum, snum->top + 1) == NULL) goto err;
snum->d[snum->top] = 0;
snum->top ++;
}
}
div_n=sdiv->top;
num_n=snum->top;
loop=num_n-div_n;
/* Lets setup a 'window' into snum
* This is the part that corresponds to the current
* 'area' being divided */
wnum.neg = 0;
wnum.d = &(snum->d[loop]);
//.........这里部分代码省略.........
示例7: OPENSSL_malloc
/*
* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
* This is an array r[] of values that are either zero or odd with an
* absolute value less than 2^w satisfying
* scalar = \sum_j r[j]*2^j
* where at most one of any w+1 consecutive digits is non-zero
* with the exception that the most significant digit may be only
* w-1 zeros away from that next non-zero digit.
*/
signed char *bn_compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
{
int window_val;
signed char *r = NULL;
int sign = 1;
int bit, next_bit, mask;
size_t len = 0, j;
if (BN_is_zero(scalar)) {
r = OPENSSL_malloc(1);
if (r == NULL) {
BNerr(BN_F_BN_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
goto err;
}
r[0] = 0;
*ret_len = 1;
return r;
}
if (w <= 0 || w > 7) { /* 'signed char' can represent integers with
* absolute values less than 2^7 */
BNerr(BN_F_BN_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
goto err;
}
bit = 1 << w; /* at most 128 */
next_bit = bit << 1; /* at most 256 */
mask = next_bit - 1; /* at most 255 */
if (BN_is_negative(scalar)) {
sign = -1;
}
if (scalar->d == NULL || scalar->top == 0) {
BNerr(BN_F_BN_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
goto err;
}
len = BN_num_bits(scalar);
r = OPENSSL_malloc(len + 1); /*
* Modified wNAF may be one digit longer than binary representation
* (*ret_len will be set to the actual length, i.e. at most
* BN_num_bits(scalar) + 1)
*/
if (r == NULL) {
BNerr(BN_F_BN_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
goto err;
}
window_val = scalar->d[0] & mask;
j = 0;
while ((window_val != 0) || (j + w + 1 < len)) { /* if j+w+1 >= len,
* window_val will not
* increase */
int digit = 0;
/* 0 <= window_val <= 2^(w+1) */
if (window_val & 1) {
/* 0 < window_val < 2^(w+1) */
if (window_val & bit) {
digit = window_val - next_bit; /* -2^w < digit < 0 */
#if 1 /* modified wNAF */
if (j + w + 1 >= len) {
/*
* Special case for generating modified wNAFs:
* no new bits will be added into window_val,
* so using a positive digit here will decrease
* the total length of the representation
*/
digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
}
#endif
} else {
示例8: bn_check_top
//.........这里部分代码省略.........
*/
while (!BN_is_zero(B))
{
BIGNUM *tmp;
/*
* 0 < B < A,
* (*) -sign*X*a == B (mod |n|),
* sign*Y*a == A (mod |n|)
*/
/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
* BN_div_no_branch will be called eventually.
*/
pA = &local_A;
BN_with_flags(pA, A, BN_FLG_CONSTTIME);
/* (D, M) := (A/B, A%B) ... */
if (!BN_div(D,M,pA,B,ctx)) goto err;
/* Now
* A = D*B + M;
* thus we have
* (**) sign*Y*a == D*B + M (mod |n|).
*/
tmp=A; /* keep the BIGNUM object, the value does not matter */
/* (A, B) := (B, A mod B) ... */
A=B;
B=M;
/* ... so we have 0 <= B < A again */
/* Since the former M is now B and the former B is now A,
* (**) translates into
* sign*Y*a == D*A + B (mod |n|),
* i.e.
* sign*Y*a - D*A == B (mod |n|).
* Similarly, (*) translates into
* -sign*X*a == A (mod |n|).
*
* Thus,
* sign*Y*a + D*sign*X*a == B (mod |n|),
* i.e.
* sign*(Y + D*X)*a == B (mod |n|).
*
* So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
* -sign*X*a == B (mod |n|),
* sign*Y*a == A (mod |n|).
* Note that X and Y stay non-negative all the time.
*/
if (!BN_mul(tmp,D,X,ctx)) goto err;
if (!BN_add(tmp,tmp,Y)) goto err;
M=Y; /* keep the BIGNUM object, the value does not matter */
Y=X;
X=tmp;
sign = -sign;
}
/*
* The while loop (Euclid's algorithm) ends when
* A == gcd(a,n);
* we have
* sign*Y*a == A (mod |n|),
* where Y is non-negative.
*/
if (sign < 0)
{
if (!BN_sub(Y,n,Y)) goto err;
}
/* Now Y*a == A (mod |n|). */
if (BN_is_one(A))
{
/* Y*a == 1 (mod |n|) */
if (!Y->neg && BN_ucmp(Y,n) < 0)
{
if (!BN_copy(R,Y)) goto err;
}
else
{
if (!BN_nnmod(R,Y,n,ctx)) goto err;
}
}
else
{
BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH,BN_R_NO_INVERSE);
goto err;
}
ret=R;
err:
if ((ret == NULL) && (in == NULL)) BN_free(R);
BN_CTX_end(ctx);
bn_check_top(ret);
return(ret);
}
示例9: bn_rand_range
/* random number r: 0 <= r < range */
static int bn_rand_range(int pseudo, BIGNUM *r, const BIGNUM *range)
{
/* Although the handling of pseudo to chose between BN_rand and
* BN_pseudo_rand could more cleanly be done via a function pointer, doing
* so crashes the ADS1.2 compiler used by BREW; see bug 329079 :-( */
int n;
int count = 100;
if (range->neg || BN_is_zero(range))
{
BNerr(BN_F_BN_RAND_RANGE, BN_R_INVALID_RANGE);
return 0;
}
n = BN_num_bits(range); /* n > 0 */
/* BN_is_bit_set(range, n - 1) always holds */
if (n == 1)
BN_zero(r);
else if (!BN_is_bit_set(range, n - 2) && !BN_is_bit_set(range, n - 3))
{
/* range = 100..._2,
* so 3*range (= 11..._2) is exactly one bit longer than range */
do
{
#ifdef LIBOPEAY_ASYNCHRONOUS_KEYGENERATION
if (pseudo)
{
if (!BN_pseudo_rand(r, n + 1, -1, 0)) return 0;
}
else
#endif
if (!BN_rand(r, n + 1, -1, 0)) return 0;
/* If r < 3*range, use r := r MOD range
* (which is either r, r - range, or r - 2*range).
* Otherwise, iterate once more.
* Since 3*range = 11..._2, each iteration succeeds with
* probability >= .75. */
if (BN_cmp(r ,range) >= 0)
{
if (!BN_sub(r, r, range)) return 0;
if (BN_cmp(r, range) >= 0)
if (!BN_sub(r, r, range)) return 0;
}
if (!--count)
{
BNerr(BN_F_BN_RAND_RANGE, BN_R_TOO_MANY_ITERATIONS);
return 0;
}
}
while (BN_cmp(r, range) >= 0);
}
else
{
do
{
/* range = 11..._2 or range = 101..._2 */
#ifdef LIBOPEAY_ASYNCHRONOUS_KEYGENERATION
if (pseudo)
{
if (!BN_pseudo_rand(r, n, -1, 0)) return 0;
}
else
#endif
if (!BN_rand(r, n, -1, 0)) return 0;
if (!--count)
{
BNerr(BN_F_BN_RAND_RANGE, BN_R_TOO_MANY_ITERATIONS);
return 0;
}
}
while (BN_cmp(r, range) >= 0);
}
bn_check_top(r);
return 1;
}
示例10: BNerr
/* Must 'OPENSSL_free' the returned data */
char *BN_bn2dec(const BIGNUM *a)
{
int i=0,num, ok = 0;
char *buf=NULL;
char *p;
BIGNUM *t=NULL;
BN_ULONG *bn_data=NULL,*lp;
/* get an upper bound for the length of the decimal integer
* num <= (BN_num_bits(a) + 1) * log(2)
* <= 3 * BN_num_bits(a) * 0.1001 + log(2) + 1 (rounding error)
* <= BN_num_bits(a)/10 + BN_num_bits/1000 + 1 + 1
*/
i=BN_num_bits(a)*3;
num=(i/10+i/1000+1)+1;
bn_data=(BN_ULONG *)OPENSSL_malloc((num/BN_DEC_NUM+1)*sizeof(BN_ULONG));
buf=(char *)OPENSSL_malloc(num+3);
if ((buf == NULL) || (bn_data == NULL))
{
BNerr(BN_F_BN_BN2DEC,ERR_R_MALLOC_FAILURE);
goto err;
}
if ((t=BN_dup(a)) == NULL) goto err;
#define BUF_REMAIN (num+3 - (size_t)(p - buf))
p=buf;
lp=bn_data;
if (BN_is_zero(t))
{
*(p++)='0';
*(p++)='\0';
}
else
{
if (BN_is_negative(t))
*p++ = '-';
i=0;
while (!BN_is_zero(t))
{
*lp=BN_div_word(t,BN_DEC_CONV);
lp++;
}
lp--;
/* We now have a series of blocks, BN_DEC_NUM chars
* in length, where the last one needs truncation.
* The blocks need to be reversed in order. */
BIO_snprintf(p,BUF_REMAIN,BN_DEC_FMT1,*lp);
while (*p) p++;
while (lp != bn_data)
{
lp--;
BIO_snprintf(p,BUF_REMAIN,BN_DEC_FMT2,*lp);
while (*p) p++;
}
}
ok = 1;
err:
if (bn_data != NULL) OPENSSL_free(bn_data);
if (t != NULL) BN_free(t);
if (!ok && buf)
{
OPENSSL_free(buf);
buf = NULL;
}
return(buf);
}
示例11: BN_usub
/* unsigned subtraction of b from a, a must be larger than b. */
int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
{
int max, min, dif;
register BN_ULONG t1, t2, *rp;
register const BN_ULONG *ap, *bp;
int i, carry;
bn_check_top(a);
bn_check_top(b);
max = a->top;
min = b->top;
dif = max - min;
if (dif < 0) { /* hmm... should not be happening */
BNerr(BN_F_BN_USUB, BN_R_ARG2_LT_ARG3);
return (0);
}
if (bn_wexpand(r, max) == NULL)
return (0);
ap = a->d;
bp = b->d;
rp = r->d;
#if 1
carry = 0;
for (i = min; i != 0; i--) {
t1 = *(ap++);
t2 = *(bp++);
if (carry) {
carry = (t1 <= t2);
t1 = (t1 - t2 - 1) & BN_MASK2;
} else {
carry = (t1 < t2);
t1 = (t1 - t2) & BN_MASK2;
}
*(rp++) = t1 & BN_MASK2;
}
#else
carry = bn_sub_words(rp, ap, bp, min);
ap += min;
bp += min;
rp += min;
#endif
if (carry) { /* subtracted */
if (!dif)
/* error: a < b */
return 0;
while (dif) {
dif--;
t1 = *(ap++);
t2 = (t1 - 1) & BN_MASK2;
*(rp++) = t2;
if (t1)
break;
}
}
memcpy(rp, ap, sizeof(*rp) * dif);
r->top = max;
r->neg = 0;
bn_correct_top(r);
return (1);
}
示例12: BN_div_recp
int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
BN_RECP_CTX *recp, BN_CTX *ctx)
{
int i,j,ret=0;
BIGNUM *a,*b,*d,*r;
BN_CTX_start(ctx);
a=BN_CTX_get(ctx);
b=BN_CTX_get(ctx);
if (dv != NULL)
d=dv;
else
d=BN_CTX_get(ctx);
if (rem != NULL)
r=rem;
else
r=BN_CTX_get(ctx);
if (a == NULL || b == NULL || d == NULL || r == NULL) goto err;
if (BN_ucmp(m,&(recp->N)) < 0)
{
if (!BN_zero(d)) return 0;
if (!BN_copy(r,m)) return 0;
BN_CTX_end(ctx);
return(1);
}
/* We want the remainder
* Given input of ABCDEF / ab
* we need multiply ABCDEF by 3 digests of the reciprocal of ab
*
*/
/* i := max(BN_num_bits(m), 2*BN_num_bits(N)) */
i=BN_num_bits(m);
j=recp->num_bits<<1;
if (j>i) i=j;
/* Nr := round(2^i / N) */
if (i != recp->shift)
recp->shift=BN_reciprocal(&(recp->Nr),&(recp->N),
i,ctx); /* BN_reciprocal returns i, or -1 for an error */
if (recp->shift == -1) goto err;
/* d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i - BN_num_bits(N)))|
* = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i - BN_num_bits(N)))|
* <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
* = |m/N|
*/
if (!BN_rshift(a,m,recp->num_bits)) goto err;
if (!BN_mul(b,a,&(recp->Nr),ctx)) goto err;
if (!BN_rshift(d,b,i-recp->num_bits)) goto err;
d->neg=0;
if (!BN_mul(b,&(recp->N),d,ctx)) goto err;
if (!BN_usub(r,m,b)) goto err;
r->neg=0;
#if 1
j=0;
while (BN_ucmp(r,&(recp->N)) >= 0)
{
if (j++ > 2)
{
BNerr(BN_F_BN_MOD_MUL_RECIPROCAL,BN_R_BAD_RECIPROCAL);
goto err;
}
if (!BN_usub(r,r,&(recp->N))) goto err;
if (!BN_add_word(d,1)) goto err;
}
#endif
r->neg=BN_is_zero(r)?0:m->neg;
d->neg=m->neg^recp->N.neg;
ret=1;
err:
BN_CTX_end(ctx);
return(ret);
}
示例13: bn_rand_range
/* random number r: 0 <= r < range */
static int bn_rand_range(int pseudo, BIGNUM *r, const BIGNUM *range)
{
int (*bn_rand)(BIGNUM *, int, int, int) = pseudo ? BN_pseudo_rand : BN_rand;
int n;
int count = 100;
if (range->neg || BN_is_zero(range))
{
BNerr(BN_F_BN_RAND_RANGE, BN_R_INVALID_RANGE);
return 0;
}
n = BN_num_bits(range); /* n > 0 */
/* BN_is_bit_set(range, n - 1) always holds */
if (n == 1)
BN_zero(r);
#ifdef OPENSSL_FIPS
/* FIPS 186-3 is picky about how random numbers for keys etc are
* generated. So we just use the second case which is equivalent to
* "Generation by Testing Candidates" mentioned in B.1.2 et al.
*/
else if (!FIPS_mode() && !BN_is_bit_set(range, n - 2) && !BN_is_bit_set(range, n - 3))
#else
else if (!BN_is_bit_set(range, n - 2) && !BN_is_bit_set(range, n - 3))
#endif
{
/* range = 100..._2,
* so 3*range (= 11..._2) is exactly one bit longer than range */
do
{
if (!bn_rand(r, n + 1, -1, 0)) return 0;
/* If r < 3*range, use r := r MOD range
* (which is either r, r - range, or r - 2*range).
* Otherwise, iterate once more.
* Since 3*range = 11..._2, each iteration succeeds with
* probability >= .75. */
if (BN_cmp(r ,range) >= 0)
{
if (!BN_sub(r, r, range)) return 0;
if (BN_cmp(r, range) >= 0)
if (!BN_sub(r, r, range)) return 0;
}
if (!--count)
{
BNerr(BN_F_BN_RAND_RANGE, BN_R_TOO_MANY_ITERATIONS);
return 0;
}
}
while (BN_cmp(r, range) >= 0);
}
else
{
do
{
/* range = 11..._2 or range = 101..._2 */
if (!bn_rand(r, n, -1, 0)) return 0;
if (!--count)
{
BNerr(BN_F_BN_RAND_RANGE, BN_R_TOO_MANY_ITERATIONS);
return 0;
}
}
while (BN_cmp(r, range) >= 0);
}
bn_check_top(r);
return 1;
}
示例14: BN_new
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
/* Returns 'ret' such that
* ret^2 == a (mod p),
* using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
* in Algebraic Computational Number Theory", algorithm 1.5.1).
* 'p' must be prime!
*/
{
BIGNUM *ret = in;
int err = 1;
int r;
BIGNUM *A, *b, *q, *t, *x, *y;
int e, i, j;
if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
{
if (BN_abs_is_word(p, 2))
{
if (ret == NULL)
ret = BN_new();
if (ret == NULL)
goto end;
if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
{
if (ret != in)
BN_free(ret);
return NULL;
}
bn_check_top(ret);
return ret;
}
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
return(NULL);
}
if (BN_is_zero(a) || BN_is_one(a))
{
if (ret == NULL)
ret = BN_new();
if (ret == NULL)
goto end;
if (!BN_set_word(ret, BN_is_one(a)))
{
if (ret != in)
BN_free(ret);
return NULL;
}
bn_check_top(ret);
return ret;
}
BN_CTX_start(ctx);
A = BN_CTX_get(ctx);
b = BN_CTX_get(ctx);
q = BN_CTX_get(ctx);
t = BN_CTX_get(ctx);
x = BN_CTX_get(ctx);
y = BN_CTX_get(ctx);
if (y == NULL) goto end;
if (ret == NULL)
ret = BN_new();
if (ret == NULL) goto end;
/* A = a mod p */
if (!BN_nnmod(A, a, p, ctx)) goto end;
/* now write |p| - 1 as 2^e*q where q is odd */
e = 1;
while (!BN_is_bit_set(p, e))
e++;
/* we'll set q later (if needed) */
if (e == 1)
{
/* The easy case: (|p|-1)/2 is odd, so 2 has an inverse
* modulo (|p|-1)/2, and square roots can be computed
* directly by modular exponentiation.
* We have
* 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
* so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
*/
if (!BN_rshift(q, p, 2)) goto end;
q->neg = 0;
if (!BN_add_word(q, 1)) goto end;
if (!BN_mod_exp(ret, A, q, p, ctx)) goto end;
err = 0;
goto vrfy;
}
if (e == 2)
{
/* |p| == 5 (mod 8)
*
* In this case 2 is always a non-square since
* Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
* So if a really is a square, then 2*a is a non-square.
* Thus for
* b := (2*a)^((|p|-5)/8),
//.........这里部分代码省略.........
示例15: BN_div
int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
BN_CTX *ctx)
{
int norm_shift,i,j,loop;
BIGNUM *tmp,wnum,*snum,*sdiv,*res;
BN_ULONG *resp,*wnump;
BN_ULONG d0,d1;
int num_n,div_n;
bn_check_top(num);
bn_check_top(divisor);
if (BN_is_zero(divisor))
{
BNerr(BN_F_BN_DIV,BN_R_DIV_BY_ZERO);
return(0);
}
if (BN_ucmp(num,divisor) < 0)
{
if (rm != NULL)
{ if (BN_copy(rm,num) == NULL) return(0); }
if (dv != NULL) BN_zero(dv);
return(1);
}
BN_CTX_start(ctx);
tmp=BN_CTX_get(ctx);
snum=BN_CTX_get(ctx);
sdiv=BN_CTX_get(ctx);
if (dv == NULL)
res=BN_CTX_get(ctx);
else res=dv;
if (sdiv==NULL || res == NULL) goto err;
tmp->neg=0;
/* First we normalise the numbers */
norm_shift=BN_BITS2-((BN_num_bits(divisor))%BN_BITS2);
if (!(BN_lshift(sdiv,divisor,norm_shift))) goto err;
sdiv->neg=0;
norm_shift+=BN_BITS2;
if (!(BN_lshift(snum,num,norm_shift))) goto err;
snum->neg=0;
div_n=sdiv->top;
num_n=snum->top;
loop=num_n-div_n;
/* Lets setup a 'window' into snum
* This is the part that corresponds to the current
* 'area' being divided */
BN_init(&wnum);
wnum.d= &(snum->d[loop]);
wnum.top= div_n;
wnum.dmax= snum->dmax+1; /* a bit of a lie */
/* Get the top 2 words of sdiv */
/* i=sdiv->top; */
d0=sdiv->d[div_n-1];
d1=(div_n == 1)?0:sdiv->d[div_n-2];
/* pointer to the 'top' of snum */
wnump= &(snum->d[num_n-1]);
/* Setup to 'res' */
res->neg= (num->neg^divisor->neg);
if (!bn_wexpand(res,(loop+1))) goto err;
res->top=loop;
resp= &(res->d[loop-1]);
/* space for temp */
if (!bn_wexpand(tmp,(div_n+1))) goto err;
if (BN_ucmp(&wnum,sdiv) >= 0)
{
if (!BN_usub(&wnum,&wnum,sdiv)) goto err;
*resp=1;
res->d[res->top-1]=1;
}
else
res->top--;
resp--;
for (i=0; i<loop-1; i++)
{
BN_ULONG q,l0;
#if defined(BN_DIV3W) && !defined(NO_ASM)
BN_ULONG bn_div_3_words(BN_ULONG*,BN_ULONG,BN_ULONG);
q=bn_div_3_words(wnump,d1,d0);
#else
BN_ULONG n0,n1,rem=0;
n0=wnump[0];
n1=wnump[-1];
if (n0 == d0)
q=BN_MASK2;
else /* n0 < d0 */
{
#ifdef BN_LLONG
BN_ULLONG t2;
//.........这里部分代码省略.........