本文整理汇总了C++中BN_with_flags函数的典型用法代码示例。如果您正苦于以下问题:C++ BN_with_flags函数的具体用法?C++ BN_with_flags怎么用?C++ BN_with_flags使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了BN_with_flags函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: BN_CTX_start
BN_BLINDING *RSA_setup_blinding(RSA *rsa, BN_CTX *in_ctx)
{
BIGNUM local_n;
BIGNUM *e,*n;
BN_CTX *ctx;
BN_BLINDING *ret = NULL;
if (in_ctx == NULL)
{
if ((ctx = BN_CTX_new()) == NULL) return 0;
}
else
ctx = in_ctx;
BN_CTX_start(ctx);
e = BN_CTX_get(ctx);
if (e == NULL)
{
RSAerr(RSA_F_RSA_SETUP_BLINDING, ERR_R_MALLOC_FAILURE);
goto err;
}
if (rsa->e == NULL)
{
e = rsa_get_public_exp(rsa->d, rsa->p, rsa->q, ctx);
if (e == NULL)
{
RSAerr(RSA_F_RSA_SETUP_BLINDING, RSA_R_NO_PUBLIC_EXPONENT);
goto err;
}
}
else
e = rsa->e;
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
{
/* Set BN_FLG_CONSTTIME flag */
n = &local_n;
BN_with_flags(n, rsa->n, BN_FLG_CONSTTIME);
}
else
n = rsa->n;
ret = BN_BLINDING_create_param(NULL, e, n, ctx,
rsa->meth->bn_mod_exp, rsa->_method_mod_n);
if (ret == NULL)
{
RSAerr(RSA_F_RSA_SETUP_BLINDING, ERR_R_BN_LIB);
goto err;
}
CRYPTO_THREADID_current(BN_BLINDING_thread_id(ret));
err:
BN_CTX_end(ctx);
if (in_ctx == NULL)
BN_CTX_free(ctx);
if(rsa->e == NULL)
BN_free(e);
return ret;
}
示例2: BN_CTX_new
BN_BLINDING *rsa_setup_blinding(RSA *rsa, BN_CTX *in_ctx) {
BIGNUM local_n;
BIGNUM *e, *n;
BN_CTX *ctx;
BN_BLINDING *ret = NULL;
BN_MONT_CTX *mont_ctx = NULL;
if (in_ctx == NULL) {
ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
} else {
ctx = in_ctx;
}
BN_CTX_start(ctx);
e = BN_CTX_get(ctx);
if (e == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
goto err;
}
if (rsa->e == NULL) {
e = rsa_get_public_exp(rsa->d, rsa->p, rsa->q, ctx);
if (e == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_R_NO_PUBLIC_EXPONENT);
goto err;
}
} else {
e = rsa->e;
}
n = &local_n;
BN_with_flags(n, rsa->n, BN_FLG_CONSTTIME);
if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) {
mont_ctx = BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx);
if (mont_ctx == NULL) {
goto err;
}
}
ret = BN_BLINDING_create_param(NULL, e, n, ctx, mont_ctx);
if (ret == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_BN_LIB);
goto err;
}
err:
BN_CTX_end(ctx);
if (in_ctx == NULL) {
BN_CTX_free(ctx);
}
if (rsa->e == NULL) {
BN_free(e);
}
return ret;
}
示例3: BN_CTX_start
BN_BLINDING *RSA_setup_blinding(RSA *rsa, BN_CTX *in_ctx)
{
BIGNUM local_n;
BIGNUM *e, *n;
BN_CTX *ctx;
BN_BLINDING *ret = NULL;
if (in_ctx == NULL) {
if ((ctx = BN_CTX_new()) == NULL)
return 0;
} else
ctx = in_ctx;
BN_CTX_start(ctx);
e = BN_CTX_get(ctx);
if (e == NULL) {
RSAerr(RSA_F_RSA_SETUP_BLINDING, ERR_R_MALLOC_FAILURE);
goto err;
}
if (rsa->e == NULL) {
e = rsa_get_public_exp(rsa->d, rsa->p, rsa->q, ctx);
if (e == NULL) {
RSAerr(RSA_F_RSA_SETUP_BLINDING, RSA_R_NO_PUBLIC_EXPONENT);
goto err;
}
} else
e = rsa->e;
if ((RAND_status() == 0) && rsa->d != NULL && rsa->d->d != NULL) {
/*
* if PRNG is not properly seeded, resort to secret exponent as
* unpredictable seed
*/
RAND_add(rsa->d->d, rsa->d->dmax * sizeof rsa->d->d[0], 0.0);
}
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) {
/* Set BN_FLG_CONSTTIME flag */
n = &local_n;
BN_with_flags(n, rsa->n, BN_FLG_CONSTTIME);
} else
n = rsa->n;
ret = BN_BLINDING_create_param(NULL, e, n, ctx,
rsa->meth->bn_mod_exp, rsa->_method_mod_n);
if (ret == NULL) {
RSAerr(RSA_F_RSA_SETUP_BLINDING, ERR_R_BN_LIB);
goto err;
}
CRYPTO_THREADID_current(BN_BLINDING_thread_id(ret));
err:
BN_CTX_end(ctx);
if (in_ctx == NULL)
BN_CTX_free(ctx);
if (rsa->e == NULL)
BN_free(e);
return ret;
}
示例4: BN_CTX_start
BN_BLINDING *RSA_setup_blinding(RSA *rsa, BN_CTX *in_ctx)
{
BIGNUM *e;
BN_CTX *ctx;
BN_BLINDING *ret = NULL;
if (in_ctx == NULL) {
if ((ctx = BN_CTX_new()) == NULL)
return 0;
} else
ctx = in_ctx;
BN_CTX_start(ctx);
e = BN_CTX_get(ctx);
if (e == NULL) {
RSAerr(RSA_F_RSA_SETUP_BLINDING, ERR_R_MALLOC_FAILURE);
goto err;
}
if (rsa->e == NULL) {
e = rsa_get_public_exp(rsa->d, rsa->p, rsa->q, ctx);
if (e == NULL) {
RSAerr(RSA_F_RSA_SETUP_BLINDING, RSA_R_NO_PUBLIC_EXPONENT);
goto err;
}
} else
e = rsa->e;
{
BIGNUM *n = BN_new();
if (n == NULL) {
RSAerr(RSA_F_RSA_SETUP_BLINDING, ERR_R_MALLOC_FAILURE);
goto err;
}
BN_with_flags(n, rsa->n, BN_FLG_CONSTTIME);
ret = BN_BLINDING_create_param(NULL, e, n, ctx, rsa->meth->bn_mod_exp,
rsa->_method_mod_n);
/* We MUST free n before any further use of rsa->n */
BN_free(n);
}
if (ret == NULL) {
RSAerr(RSA_F_RSA_SETUP_BLINDING, ERR_R_BN_LIB);
goto err;
}
BN_BLINDING_set_current_thread(ret);
err:
BN_CTX_end(ctx);
if (ctx != in_ctx)
BN_CTX_free(ctx);
if (e != rsa->e)
BN_free(e);
return ret;
}
示例5: dsa_builtin_keygen
static int dsa_builtin_keygen(DSA *dsa)
{
int ok = 0;
BN_CTX *ctx = NULL;
BIGNUM *pub_key = NULL, *priv_key = NULL;
if ((ctx = BN_CTX_new()) == NULL)
goto err;
if (dsa->priv_key == NULL) {
if ((priv_key = BN_secure_new()) == NULL)
goto err;
} else
priv_key = dsa->priv_key;
do
if (!BN_rand_range(priv_key, dsa->q))
goto err;
while (BN_is_zero(priv_key)) ;
if (dsa->pub_key == NULL) {
if ((pub_key = BN_new()) == NULL)
goto err;
} else
pub_key = dsa->pub_key;
{
BIGNUM *local_prk = NULL;
BIGNUM *prk;
if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0) {
local_prk = prk = BN_new();
if (!local_prk)
goto err;
BN_with_flags(prk, priv_key, BN_FLG_CONSTTIME);
} else
prk = priv_key;
if (!BN_mod_exp(pub_key, dsa->g, prk, dsa->p, ctx)) {
BN_free(local_prk);
goto err;
}
BN_free(local_prk);
}
dsa->priv_key = priv_key;
dsa->pub_key = pub_key;
ok = 1;
err:
if (pub_key != dsa->pub_key)
BN_free(pub_key);
if (priv_key != dsa->priv_key)
BN_free(priv_key);
BN_CTX_free(ctx);
return (ok);
}
示例6: rsa_default_private_transform
int rsa_default_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in,
size_t len) {
BIGNUM *f, *result;
BN_CTX *ctx = NULL;
unsigned blinding_index = 0;
BN_BLINDING *blinding = NULL;
int ret = 0;
ctx = BN_CTX_new();
if (ctx == NULL) {
goto err;
}
BN_CTX_start(ctx);
f = BN_CTX_get(ctx);
result = BN_CTX_get(ctx);
if (f == NULL || result == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
goto err;
}
if (BN_bin2bn(in, len, f) == NULL) {
goto err;
}
if (BN_ucmp(f, rsa->n) >= 0) {
/* Usually the padding functions would catch this. */
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
goto err;
}
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
/* We cannot do blinding or verification without |e|, and continuing without
* those countermeasures is dangerous. However, the Java/Android RSA API
* requires support for keys where only |d| and |n| (and not |e|) are known.
* The callers that require that bad behavior set |RSA_FLAG_NO_BLINDING|. */
int disable_security = (rsa->flags & RSA_FLAG_NO_BLINDING) && rsa->e == NULL;
if (!disable_security) {
/* Keys without public exponents must have blinding explicitly disabled to
* be used. */
if (rsa->e == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_R_NO_PUBLIC_EXPONENT);
goto err;
}
blinding = rsa_blinding_get(rsa, &blinding_index, ctx);
if (blinding == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
if (!BN_BLINDING_convert(f, blinding, rsa->e, rsa->mont_n, ctx)) {
goto err;
}
}
if (rsa->p != NULL && rsa->q != NULL && rsa->e != NULL && rsa->dmp1 != NULL &&
rsa->dmq1 != NULL && rsa->iqmp != NULL) {
if (!mod_exp(result, f, rsa, ctx)) {
goto err;
}
} else {
BIGNUM local_d;
BIGNUM *d = NULL;
BN_init(&local_d);
d = &local_d;
BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
if (!BN_mod_exp_mont_consttime(result, f, d, rsa->n, ctx, rsa->mont_n)) {
goto err;
}
}
/* Verify the result to protect against fault attacks as described in the
* 1997 paper "On the Importance of Checking Cryptographic Protocols for
* Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Some
* implementations do this only when the CRT is used, but we do it in all
* cases. Section 6 of the aforementioned paper describes an attack that
* works when the CRT isn't used. That attack is much less likely to succeed
* than the CRT attack, but there have likely been improvements since 1997.
*
* This check is cheap assuming |e| is small; it almost always is. */
if (!disable_security) {
BIGNUM *vrfy = BN_CTX_get(ctx);
if (vrfy == NULL ||
!BN_mod_exp_mont(vrfy, result, rsa->e, rsa->n, ctx, rsa->mont_n) ||
!BN_equal_consttime(vrfy, f)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
if (!BN_BLINDING_invert(result, blinding, rsa->mont_n, ctx)) {
goto err;
}
}
//.........这里部分代码省略.........
示例7: mod_exp
static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) {
assert(ctx != NULL);
assert(rsa->n != NULL);
assert(rsa->e != NULL);
assert(rsa->d != NULL);
assert(rsa->p != NULL);
assert(rsa->q != NULL);
assert(rsa->dmp1 != NULL);
assert(rsa->dmq1 != NULL);
assert(rsa->iqmp != NULL);
BIGNUM *r1, *m1, *vrfy;
BIGNUM local_dmp1, local_dmq1, local_c, local_r1;
BIGNUM *dmp1, *dmq1, *c, *pr1;
int ret = 0;
size_t i, num_additional_primes = 0;
if (rsa->additional_primes != NULL) {
num_additional_primes = sk_RSA_additional_prime_num(rsa->additional_primes);
}
BN_CTX_start(ctx);
r1 = BN_CTX_get(ctx);
m1 = BN_CTX_get(ctx);
vrfy = BN_CTX_get(ctx);
if (r1 == NULL ||
m1 == NULL ||
vrfy == NULL) {
goto err;
}
{
BIGNUM local_p, local_q;
BIGNUM *p = NULL, *q = NULL;
/* Make sure BN_mod in Montgomery initialization uses BN_FLG_CONSTTIME. */
BN_init(&local_p);
p = &local_p;
BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
BN_init(&local_q);
q = &local_q;
BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME);
if (!BN_MONT_CTX_set_locked(&rsa->mont_p, &rsa->lock, p, ctx) ||
!BN_MONT_CTX_set_locked(&rsa->mont_q, &rsa->lock, q, ctx)) {
goto err;
}
}
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx)) {
goto err;
}
/* compute I mod q */
c = &local_c;
BN_with_flags(c, I, BN_FLG_CONSTTIME);
if (!BN_mod(r1, c, rsa->q, ctx)) {
goto err;
}
/* compute r1^dmq1 mod q */
dmq1 = &local_dmq1;
BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME);
if (!BN_mod_exp_mont_consttime(m1, r1, dmq1, rsa->q, ctx, rsa->mont_q)) {
goto err;
}
/* compute I mod p */
c = &local_c;
BN_with_flags(c, I, BN_FLG_CONSTTIME);
if (!BN_mod(r1, c, rsa->p, ctx)) {
goto err;
}
/* compute r1^dmp1 mod p */
dmp1 = &local_dmp1;
BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME);
if (!BN_mod_exp_mont_consttime(r0, r1, dmp1, rsa->p, ctx, rsa->mont_p)) {
goto err;
}
if (!BN_sub(r0, r0, m1)) {
goto err;
}
/* This will help stop the size of r0 increasing, which does
* affect the multiply if it optimised for a power of 2 size */
if (BN_is_negative(r0)) {
if (!BN_add(r0, r0, rsa->p)) {
goto err;
}
}
if (!BN_mul(r1, r0, rsa->iqmp, ctx)) {
goto err;
}
/* Turn BN_FLG_CONSTTIME flag on before division operation */
pr1 = &local_r1;
//.........这里部分代码省略.........
示例8: eay_dh_generate_key
static int
eay_dh_generate_key(DH *dh)
{
int ok = 0;
int generate_new_key = 0;
unsigned l;
BN_CTX *ctx;
#if 0
BN_MONT_CTX *mont = NULL;
#endif
BIGNUM *pub_key = NULL, *priv_key = NULL;
ctx = BN_CTX_new();
if (ctx == NULL) {
goto err;
}
if (dh->priv_key == NULL) {
priv_key = BN_new();
if (priv_key == NULL) {
goto err;
}
generate_new_key = 1;
} else{
priv_key = dh->priv_key;
}
if (dh->pub_key == NULL) {
pub_key = BN_new();
if (pub_key == NULL) {
goto err;
}
} else{
pub_key = dh->pub_key;
}
#if 0
if (dh->flags & DH_FLAG_CACHE_MONT_P) {
mont = BN_MONT_CTX_set_locked(&dh->method_mont_p,
CRYPTO_LOCK_DH, dh->p, ctx);
if (!mont) {
goto err;
}
}
#endif
if (generate_new_key) {
l = dh->length ? dh->length : BN_num_bits(dh->p) - 1; /* secret exponent length */
if (!BN_rand(priv_key, l, 0, 0)) {
goto err;
}
}
{
BIGNUM local_prk;
BIGNUM *prk;
#if 0
if ((dh->flags & DH_FLAG_NO_EXP_CONSTTIME) == 0) {
BN_init(&local_prk);
prk = &local_prk;
BN_with_flags(prk, priv_key, BN_FLG_CONSTTIME);
} else
#endif
prk = priv_key;
if (!dh->meth->bn_mod_exp(dh, pub_key, dh->g, prk, dh->p, ctx /* , mont */)) {
goto err;
}
}
dh->pub_key = pub_key;
dh->priv_key = priv_key;
ok = 1;
err:
/*
* if (ok != 1)
* DHerr(DH_F_GENERATE_KEY,ERR_R_BN_LIB);
*/
if ((pub_key != NULL) && (dh->pub_key == NULL)) {
BN_clear_free(pub_key);
}
if ((priv_key != NULL) && (dh->priv_key == NULL)) {
BN_clear_free(priv_key);
}
BN_CTX_free(ctx);
return (ok);
}
示例9: RSA_eay_mod_exp
static int RSA_eay_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
{
BIGNUM *r1,*m1,*vrfy;
BIGNUM local_dmp1,local_dmq1,local_c,local_r1;
BIGNUM *dmp1,*dmq1,*c,*pr1;
int ret=0;
BN_CTX_start(ctx);
r1 = BN_CTX_get(ctx);
m1 = BN_CTX_get(ctx);
vrfy = BN_CTX_get(ctx);
{
BIGNUM local_p, local_q;
BIGNUM *p = NULL, *q = NULL;
/* Make sure BN_mod_inverse in Montgomery intialization uses the
* BN_FLG_CONSTTIME flag (unless RSA_FLAG_NO_CONSTTIME is set)
*/
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
{
BN_init(&local_p);
p = &local_p;
BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
BN_init(&local_q);
q = &local_q;
BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME);
}
else
{
p = rsa->p;
q = rsa->q;
}
if (rsa->flags & RSA_FLAG_CACHE_PRIVATE)
{
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_p, CRYPTO_LOCK_RSA, p, ctx))
goto err;
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_q, CRYPTO_LOCK_RSA, q, ctx))
goto err;
}
}
if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx))
goto err;
/* compute I mod q */
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
{
c = &local_c;
BN_with_flags(c, I, BN_FLG_CONSTTIME);
if (!BN_mod(r1,c,rsa->q,ctx)) goto err;
}
else
{
if (!BN_mod(r1,I,rsa->q,ctx)) goto err;
}
/* compute r1^dmq1 mod q */
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
{
dmq1 = &local_dmq1;
BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME);
}
else
dmq1 = rsa->dmq1;
if (!rsa->meth->bn_mod_exp(m1,r1,dmq1,rsa->q,ctx,
rsa->_method_mod_q)) goto err;
/* compute I mod p */
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
{
c = &local_c;
BN_with_flags(c, I, BN_FLG_CONSTTIME);
if (!BN_mod(r1,c,rsa->p,ctx)) goto err;
}
else
{
if (!BN_mod(r1,I,rsa->p,ctx)) goto err;
}
/* compute r1^dmp1 mod p */
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
{
dmp1 = &local_dmp1;
BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME);
}
else
dmp1 = rsa->dmp1;
if (!rsa->meth->bn_mod_exp(r0,r1,dmp1,rsa->p,ctx,
rsa->_method_mod_p)) goto err;
if (!BN_sub(r0,r0,m1)) goto err;
/* This will help stop the size of r0 increasing, which does
* affect the multiply if it optimised for a power of 2 size */
if (BN_is_negative(r0))
if (!BN_add(r0,r0,rsa->p)) goto err;
//.........这里部分代码省略.........
示例10: rsa_ossl_mod_exp
static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
{
BIGNUM *r1, *m1, *vrfy, *r2, *m[RSA_MAX_PRIME_NUM - 2];
int ret = 0, i, ex_primes = 0, smooth = 0;
RSA_PRIME_INFO *pinfo;
BN_CTX_start(ctx);
r1 = BN_CTX_get(ctx);
r2 = BN_CTX_get(ctx);
m1 = BN_CTX_get(ctx);
vrfy = BN_CTX_get(ctx);
if (vrfy == NULL)
goto err;
if (rsa->version == RSA_ASN1_VERSION_MULTI
&& ((ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos)) <= 0
|| ex_primes > RSA_MAX_PRIME_NUM - 2))
goto err;
if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) {
BIGNUM *factor = BN_new();
if (factor == NULL)
goto err;
/*
* Make sure BN_mod_inverse in Montgomery initialization uses the
* BN_FLG_CONSTTIME flag
*/
if (!(BN_with_flags(factor, rsa->p, BN_FLG_CONSTTIME),
BN_MONT_CTX_set_locked(&rsa->_method_mod_p, rsa->lock,
factor, ctx))
|| !(BN_with_flags(factor, rsa->q, BN_FLG_CONSTTIME),
BN_MONT_CTX_set_locked(&rsa->_method_mod_q, rsa->lock,
factor, ctx))) {
BN_free(factor);
goto err;
}
for (i = 0; i < ex_primes; i++) {
pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i);
BN_with_flags(factor, pinfo->r, BN_FLG_CONSTTIME);
if (!BN_MONT_CTX_set_locked(&pinfo->m, rsa->lock, factor, ctx)) {
BN_free(factor);
goto err;
}
}
/*
* We MUST free |factor| before any further use of the prime factors
*/
BN_free(factor);
smooth = (ex_primes == 0)
&& (rsa->meth->bn_mod_exp == BN_mod_exp_mont)
&& (BN_num_bits(rsa->q) == BN_num_bits(rsa->p));
}
if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock,
rsa->n, ctx))
goto err;
if (smooth) {
/*
* Conversion from Montgomery domain, a.k.a. Montgomery reduction,
* accepts values in [0-m*2^w) range. w is m's bit width rounded up
* to limb width. So that at the very least if |I| is fully reduced,
* i.e. less than p*q, we can count on from-to round to perform
* below modulo operations on |I|. Unlike BN_mod it's constant time.
*/
if (/* m1 = I moq q */
!bn_from_mont_fixed_top(m1, I, rsa->_method_mod_q, ctx)
|| !bn_to_mont_fixed_top(m1, m1, rsa->_method_mod_q, ctx)
/* m1 = m1^dmq1 mod q */
|| !BN_mod_exp_mont_consttime(m1, m1, rsa->dmq1, rsa->q, ctx,
rsa->_method_mod_q)
/* r1 = I mod p */
|| !bn_from_mont_fixed_top(r1, I, rsa->_method_mod_p, ctx)
|| !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx)
/* r1 = r1^dmp1 mod p */
|| !BN_mod_exp_mont_consttime(r1, r1, rsa->dmp1, rsa->p, ctx,
rsa->_method_mod_p)
/* r1 = (r1 - m1) mod p */
/*
* bn_mod_sub_fixed_top is not regular modular subtraction,
* it can tolerate subtrahend to be larger than modulus, but
* not bit-wise wider. This makes up for uncommon q>p case,
* when |m1| can be larger than |rsa->p|.
*/
|| !bn_mod_sub_fixed_top(r1, r1, m1, rsa->p)
/* r1 = r1 * iqmp mod p */
|| !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx)
|| !bn_mul_mont_fixed_top(r1, r1, rsa->iqmp, rsa->_method_mod_p,
ctx)
/* r0 = r1 * q + m1 */
|| !bn_mul_fixed_top(r0, r1, rsa->q, ctx)
|| !bn_mod_add_fixed_top(r0, r0, m1, rsa->n))
goto err;
//.........这里部分代码省略.........
示例11: RSA_eay_mod_exp
static int
RSA_eay_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
{
BIGNUM *r1, *m1, *vrfy;
BIGNUM dmp1, dmq1, c, pr1;
int ret = 0;
BN_CTX_start(ctx);
r1 = BN_CTX_get(ctx);
m1 = BN_CTX_get(ctx);
vrfy = BN_CTX_get(ctx);
if (r1 == NULL || m1 == NULL || vrfy == NULL) {
RSAerr(RSA_F_RSA_EAY_MOD_EXP, ERR_R_MALLOC_FAILURE);
goto err;
}
{
BIGNUM p, q;
/*
* Make sure BN_mod_inverse in Montgomery intialization uses the
* BN_FLG_CONSTTIME flag
*/
BN_init(&p);
BN_init(&q);
BN_with_flags(&p, rsa->p, BN_FLG_CONSTTIME);
BN_with_flags(&q, rsa->q, BN_FLG_CONSTTIME);
if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) {
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_p,
CRYPTO_LOCK_RSA, &p, ctx) ||
!BN_MONT_CTX_set_locked(&rsa->_method_mod_q,
CRYPTO_LOCK_RSA, &q, ctx)) {
goto err;
}
}
}
if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n,
CRYPTO_LOCK_RSA, rsa->n, ctx))
goto err;
/* compute I mod q */
BN_init(&c);
BN_with_flags(&c, I, BN_FLG_CONSTTIME);
if (!BN_mod(r1, &c, rsa->q, ctx))
goto err;
/* compute r1^dmq1 mod q */
BN_init(&dmq1);
BN_with_flags(&dmq1, rsa->dmq1, BN_FLG_CONSTTIME);
if (!rsa->meth->bn_mod_exp(m1, r1, &dmq1, rsa->q, ctx,
rsa->_method_mod_q))
goto err;
/* compute I mod p */
BN_with_flags(&c, I, BN_FLG_CONSTTIME);
if (!BN_mod(r1, &c, rsa->p, ctx))
goto err;
/* compute r1^dmp1 mod p */
BN_init(&dmp1);
BN_with_flags(&dmp1, rsa->dmp1, BN_FLG_CONSTTIME);
if (!rsa->meth->bn_mod_exp(r0, r1, &dmp1, rsa->p, ctx,
rsa->_method_mod_p))
goto err;
if (!BN_sub(r0, r0, m1))
goto err;
/*
* This will help stop the size of r0 increasing, which does
* affect the multiply if it optimised for a power of 2 size
*/
if (BN_is_negative(r0))
if (!BN_add(r0, r0, rsa->p))
goto err;
if (!BN_mul(r1, r0, rsa->iqmp, ctx))
goto err;
/* Turn BN_FLG_CONSTTIME flag on before division operation */
BN_init(&pr1);
BN_with_flags(&pr1, r1, BN_FLG_CONSTTIME);
if (!BN_mod(r0, &pr1, rsa->p, ctx))
goto err;
/*
* If p < q it is occasionally possible for the correction of
* adding 'p' if r0 is negative above to leave the result still
* negative. This can break the private key operations: the following
* second correction should *always* correct this rare occurrence.
* This will *never* happen with OpenSSL generated keys because
* they ensure p > q [steve]
//.........这里部分代码省略.........
示例12: RSA_eay_private_decrypt
static int RSA_eay_private_decrypt(int flen, const unsigned char *from,
unsigned char *to, RSA *rsa, int padding)
{
BIGNUM *f, *ret, *br;
int j,num=0,r= -1;
unsigned char *p;
unsigned char *buf=NULL;
BN_CTX *ctx=NULL;
int local_blinding = 0;
BN_BLINDING *blinding = NULL;
if((ctx = BN_CTX_new()) == NULL) goto err;
BN_CTX_start(ctx);
f = BN_CTX_get(ctx);
br = BN_CTX_get(ctx);
ret = BN_CTX_get(ctx);
num = BN_num_bytes(rsa->n);
buf = OPENSSL_malloc(num);
if(!f || !ret || !buf)
{
RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT,ERR_R_MALLOC_FAILURE);
goto err;
}
/* This check was for equality but PGP does evil things
* and chops off the top '0' bytes */
if (flen > num)
{
RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT,RSA_R_DATA_GREATER_THAN_MOD_LEN);
goto err;
}
/* make data into a big number */
if (BN_bin2bn(from,(int)flen,f) == NULL) goto err;
if (BN_ucmp(f, rsa->n) >= 0)
{
RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT,RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
goto err;
}
if (!(rsa->flags & RSA_FLAG_NO_BLINDING))
{
blinding = rsa_get_blinding(rsa, &br, &local_blinding, ctx);
if (blinding == NULL)
{
RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT, ERR_R_INTERNAL_ERROR);
goto err;
}
}
if (blinding != NULL)
if (!rsa_blinding_convert(blinding, local_blinding, f, br, ctx))
goto err;
/* do the decrypt */
if ( (rsa->flags & RSA_FLAG_EXT_PKEY) ||
((rsa->p != NULL) &&
(rsa->q != NULL) &&
(rsa->dmp1 != NULL) &&
(rsa->dmq1 != NULL) &&
(rsa->iqmp != NULL)) )
{
if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) goto err;
}
else
{
BIGNUM local_d;
BIGNUM *d = NULL;
if (!(rsa->flags & RSA_FLAG_NO_EXP_CONSTTIME))
{
d = &local_d;
BN_with_flags(d, rsa->d, BN_FLG_EXP_CONSTTIME);
}
else
d = rsa->d;
MONT_HELPER(rsa, ctx, n, rsa->flags & RSA_FLAG_CACHE_PUBLIC, goto err);
if (!rsa->meth->bn_mod_exp(ret,f,d,rsa->n,ctx,
rsa->_method_mod_n))
goto err;
}
if (blinding)
if (!rsa_blinding_invert(blinding, local_blinding, ret, br, ctx))
goto err;
p=buf;
j=BN_bn2bin(ret,p); /* j is only used with no-padding mode */
switch (padding)
{
case RSA_PKCS1_PADDING:
r=RSA_padding_check_PKCS1_type_2(to,num,buf,j,num);
break;
#ifndef OPENSSL_NO_SHA
case RSA_PKCS1_OAEP_PADDING:
r=RSA_padding_check_PKCS1_OAEP(to,num,buf,j,num,NULL,0);
break;
//.........这里部分代码省略.........
示例13: bn_check_top
/* BN_mod_inverse_no_branch is a special version of BN_mod_inverse.
* It does not contain branches that may leak sensitive information.
*/
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
{
BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
BIGNUM local_A, local_B;
BIGNUM *pA, *pB;
BIGNUM *ret=NULL;
int sign;
bn_check_top(a);
bn_check_top(n);
BN_CTX_start(ctx);
A = BN_CTX_get(ctx);
B = BN_CTX_get(ctx);
X = BN_CTX_get(ctx);
D = BN_CTX_get(ctx);
M = BN_CTX_get(ctx);
Y = BN_CTX_get(ctx);
T = BN_CTX_get(ctx);
if (T == NULL) goto err;
if (in == NULL)
R=BN_new();
else
R=in;
if (R == NULL) goto err;
BN_one(X);
BN_zero(Y);
if (BN_copy(B,a) == NULL) goto err;
if (BN_copy(A,n) == NULL) goto err;
A->neg = 0;
if (B->neg || (BN_ucmp(B, A) >= 0))
{
/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
* BN_div_no_branch will be called eventually.
*/
pB = &local_B;
BN_with_flags(pB, B, BN_FLG_CONSTTIME);
if (!BN_nnmod(B, pB, A, ctx)) goto err;
}
sign = -1;
/* From B = a mod |n|, A = |n| it follows that
*
* 0 <= B < A,
* -sign*X*a == B (mod |n|),
* sign*Y*a == A (mod |n|).
*/
while (!BN_is_zero(B))
{
BIGNUM *tmp;
/*
* 0 < B < A,
* (*) -sign*X*a == B (mod |n|),
* sign*Y*a == A (mod |n|)
*/
/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
* BN_div_no_branch will be called eventually.
*/
pA = &local_A;
BN_with_flags(pA, A, BN_FLG_CONSTTIME);
/* (D, M) := (A/B, A%B) ... */
if (!BN_div(D,M,pA,B,ctx)) goto err;
/* Now
* A = D*B + M;
* thus we have
* (**) sign*Y*a == D*B + M (mod |n|).
*/
tmp=A; /* keep the BIGNUM object, the value does not matter */
/* (A, B) := (B, A mod B) ... */
A=B;
B=M;
/* ... so we have 0 <= B < A again */
/* Since the former M is now B and the former B is now A,
* (**) translates into
* sign*Y*a == D*A + B (mod |n|),
* i.e.
* sign*Y*a - D*A == B (mod |n|).
* Similarly, (*) translates into
* -sign*X*a == A (mod |n|).
*
* Thus,
* sign*Y*a + D*sign*X*a == B (mod |n|),
* i.e.
* sign*(Y + D*X)*a == B (mod |n|).
*
* So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
//.........这里部分代码省略.........
示例14: rsa_default_multi_prime_keygen
//.........这里部分代码省略.........
/* ap->r is is the product of all the primes prior to the current one
* (including p and q). */
if (!BN_copy(ap->r, rsa->n)) {
goto err;
}
if (i == num_primes - 1) {
/* In the case of the last prime, we calculated n as |r1| in the loop
* above. */
if (!BN_copy(rsa->n, r1)) {
goto err;
}
} else if (!BN_mul(rsa->n, rsa->n, ap->prime, ctx)) {
goto err;
}
if (!BN_GENCB_call(cb, 3, 1)) {
goto err;
}
}
if (BN_cmp(rsa->p, rsa->q) < 0) {
tmp = rsa->p;
rsa->p = rsa->q;
rsa->q = tmp;
}
/* calculate d */
if (!BN_sub(r1, rsa->p, BN_value_one())) {
goto err; /* p-1 */
}
if (!BN_sub(r2, rsa->q, BN_value_one())) {
goto err; /* q-1 */
}
if (!BN_mul(r0, r1, r2, ctx)) {
goto err; /* (p-1)(q-1) */
}
for (i = 2; i < num_primes; i++) {
RSA_additional_prime *ap =
sk_RSA_additional_prime_value(additional_primes, i - 2);
if (!BN_sub(r3, ap->prime, BN_value_one()) ||
!BN_mul(r0, r0, r3, ctx)) {
goto err;
}
}
pr0 = &local_r0;
BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) {
goto err; /* d */
}
/* set up d for correct BN_FLG_CONSTTIME flag */
d = &local_d;
BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
/* calculate d mod (p-1) */
if (!BN_mod(rsa->dmp1, d, r1, ctx)) {
goto err;
}
/* calculate d mod (q-1) */
if (!BN_mod(rsa->dmq1, d, r2, ctx)) {
goto err;
}
/* calculate inverse of q mod p */
p = &local_p;
BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) {
goto err;
}
for (i = 2; i < num_primes; i++) {
RSA_additional_prime *ap =
sk_RSA_additional_prime_value(additional_primes, i - 2);
if (!BN_sub(ap->exp, ap->prime, BN_value_one()) ||
!BN_mod(ap->exp, rsa->d, ap->exp, ctx) ||
!BN_mod_inverse(ap->coeff, ap->r, ap->prime, ctx)) {
goto err;
}
}
ok = 1;
rsa->additional_primes = additional_primes;
additional_primes = NULL;
err:
if (ok == -1) {
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
ok = 0;
}
if (ctx != NULL) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
sk_RSA_additional_prime_pop_free(additional_primes,
RSA_additional_prime_free);
return ok;
}
示例15: rsa_builtin_keygen
static int rsa_builtin_keygen(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
{
BIGNUM *r0=NULL,*r1=NULL,*r2=NULL,*r3=NULL,*tmp;
BIGNUM local_r0,local_d,local_p;
BIGNUM *pr0,*d,*p;
int bitsp,bitsq,ok= -1,n=0;
BN_CTX *ctx=NULL;
ctx=BN_CTX_new();
if (ctx == NULL) goto err;
BN_CTX_start(ctx);
r0 = BN_CTX_get(ctx);
r1 = BN_CTX_get(ctx);
r2 = BN_CTX_get(ctx);
r3 = BN_CTX_get(ctx);
if (r3 == NULL) goto err;
bitsp=(bits+1)/2;
bitsq=bits-bitsp;
/* We need the RSA components non-NULL */
if(!rsa->n && ((rsa->n=BN_new()) == NULL)) goto err;
if(!rsa->d && ((rsa->d=BN_new()) == NULL)) goto err;
if(!rsa->e && ((rsa->e=BN_new()) == NULL)) goto err;
if(!rsa->p && ((rsa->p=BN_new()) == NULL)) goto err;
if(!rsa->q && ((rsa->q=BN_new()) == NULL)) goto err;
if(!rsa->dmp1 && ((rsa->dmp1=BN_new()) == NULL)) goto err;
if(!rsa->dmq1 && ((rsa->dmq1=BN_new()) == NULL)) goto err;
if(!rsa->iqmp && ((rsa->iqmp=BN_new()) == NULL)) goto err;
BN_copy(rsa->e, e_value);
/* generate p and q */
for (;;)
{
if(!BN_generate_prime_ex(rsa->p, bitsp, 0, NULL, NULL, cb))
goto err;
if (!BN_sub(r2,rsa->p,BN_value_one())) goto err;
if (!BN_gcd(r1,r2,rsa->e,ctx)) goto err;
if (BN_is_one(r1)) break;
if(!BN_GENCB_call(cb, 2, n++))
goto err;
}
if(!BN_GENCB_call(cb, 3, 0))
goto err;
for (;;)
{
/* When generating ridiculously small keys, we can get stuck
* continually regenerating the same prime values. Check for
* this and bail if it happens 3 times. */
unsigned int degenerate = 0;
do
{
if(!BN_generate_prime_ex(rsa->q, bitsq, 0, NULL, NULL, cb))
goto err;
} while((BN_cmp(rsa->p, rsa->q) == 0) && (++degenerate < 3));
if(degenerate == 3)
{
ok = 0; /* we set our own err */
RSAerr(RSA_F_RSA_BUILTIN_KEYGEN,RSA_R_KEY_SIZE_TOO_SMALL);
goto err;
}
if (!BN_sub(r2,rsa->q,BN_value_one())) goto err;
if (!BN_gcd(r1,r2,rsa->e,ctx)) goto err;
if (BN_is_one(r1))
break;
if(!BN_GENCB_call(cb, 2, n++))
goto err;
}
if(!BN_GENCB_call(cb, 3, 1))
goto err;
if (BN_cmp(rsa->p,rsa->q) < 0)
{
tmp=rsa->p;
rsa->p=rsa->q;
rsa->q=tmp;
}
/* calculate n */
if (!BN_mul(rsa->n,rsa->p,rsa->q,ctx)) goto err;
/* calculate d */
if (!BN_sub(r1,rsa->p,BN_value_one())) goto err; /* p-1 */
if (!BN_sub(r2,rsa->q,BN_value_one())) goto err; /* q-1 */
if (!BN_mul(r0,r1,r2,ctx)) goto err; /* (p-1)(q-1) */
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
{
pr0 = &local_r0;
BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
}
else
pr0 = r0;
if (!BN_mod_inverse(rsa->d,rsa->e,pr0,ctx)) goto err; /* d */
/* set up d for correct BN_FLG_CONSTTIME flag */
if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
{
d = &local_d;
BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
}
//.........这里部分代码省略.........