本文整理汇总了C++中BN_mul_word函数的典型用法代码示例。如果您正苦于以下问题:C++ BN_mul_word函数的具体用法?C++ BN_mul_word怎么用?C++ BN_mul_word使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了BN_mul_word函数的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: BN_mod_inverse_no_branch
//.........这里部分代码省略.........
tmp=A; /* keep the BIGNUM object, the value does not matter */
/* (A, B) := (B, A mod B) ... */
A=B;
B=M;
/* ... so we have 0 <= B < A again */
/* Since the former M is now B and the former B is now A,
* (**) translates into
* sign*Y*a == D*A + B (mod |n|),
* i.e.
* sign*Y*a - D*A == B (mod |n|).
* Similarly, (*) translates into
* -sign*X*a == A (mod |n|).
*
* Thus,
* sign*Y*a + D*sign*X*a == B (mod |n|),
* i.e.
* sign*(Y + D*X)*a == B (mod |n|).
*
* So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
* -sign*X*a == B (mod |n|),
* sign*Y*a == A (mod |n|).
* Note that X and Y stay non-negative all the time.
*/
/* most of the time D is very small, so we can optimize tmp := D*X+Y */
if (BN_is_one(D))
{
if (!BN_add(tmp,X,Y)) goto err;
}
else
{
if (BN_is_word(D,2))
{
if (!BN_lshift1(tmp,X)) goto err;
}
else if (BN_is_word(D,4))
{
if (!BN_lshift(tmp,X,2)) goto err;
}
else if (D->top == 1)
{
if (!BN_copy(tmp,X)) goto err;
if (!BN_mul_word(tmp,D->d[0])) goto err;
}
else
{
if (!BN_mul(tmp,D,X,ctx)) goto err;
}
if (!BN_add(tmp,tmp,Y)) goto err;
}
M=Y; /* keep the BIGNUM object, the value does not matter */
Y=X;
X=tmp;
sign = -sign;
}
}
/*
* The while loop (Euclid's algorithm) ends when
* A == gcd(a,n);
* we have
* sign*Y*a == A (mod |n|),
* where Y is non-negative.
*/
if (sign < 0)
{
if (!BN_sub(Y,n,Y)) goto err;
}
/* Now Y*a == A (mod |n|). */
if (BN_is_one(A))
{
/* Y*a == 1 (mod |n|) */
if (!Y->neg && BN_ucmp(Y,n) < 0)
{
if (!BN_copy(R,Y)) goto err;
}
else
{
if (!BN_nnmod(R,Y,n,ctx)) goto err;
}
}
else
{
BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE);
goto err;
}
ret=R;
err:
if ((ret == NULL) && (in == NULL)) BN_free(R);
BN_CTX_end(ctx);
bn_check_top(ret);
return(ret);
}
示例2: ECDSA_SIG_recover_key_GFp
// Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields
// recid selects which key is recovered
// if check is nonzero, additional checks are performed
int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check)
{
if (!eckey) return 0;
int ret = 0;
BN_CTX *ctx = NULL;
BIGNUM *x = NULL;
BIGNUM *e = NULL;
BIGNUM *order = NULL;
BIGNUM *sor = NULL;
BIGNUM *eor = NULL;
BIGNUM *field = NULL;
EC_POINT *R = NULL;
EC_POINT *O = NULL;
EC_POINT *Q = NULL;
BIGNUM *rr = NULL;
BIGNUM *zero = NULL;
int n = 0;
int i = recid / 2;
const EC_GROUP *group = EC_KEY_get0_group(eckey);
if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; }
BN_CTX_start(ctx);
order = BN_CTX_get(ctx);
if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; }
x = BN_CTX_get(ctx);
if (!BN_copy(x, order)) { ret=-1; goto err; }
if (!BN_mul_word(x, i)) { ret=-1; goto err; }
if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; }
field = BN_CTX_get(ctx);
if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; }
if (BN_cmp(x, field) >= 0) { ret=0; goto err; }
if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; }
if (check)
{
if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; }
if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; }
}
if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
n = EC_GROUP_get_degree(group);
e = BN_CTX_get(ctx);
if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; }
if (8*msglen > n) BN_rshift(e, e, 8-(n & 7));
zero = BN_CTX_get(ctx);
if (!BN_zero(zero)) { ret=-1; goto err; }
if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; }
rr = BN_CTX_get(ctx);
if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; }
sor = BN_CTX_get(ctx);
if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; }
eor = BN_CTX_get(ctx);
if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; }
if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; }
if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; }
ret = 1;
err:
if (ctx) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
if (R != NULL) EC_POINT_free(R);
if (O != NULL) EC_POINT_free(O);
if (Q != NULL) EC_POINT_free(Q);
return ret;
}
示例3: printnumber
void
printnumber(FILE *f, const struct number *b, u_int base)
{
struct number *int_part, *fract_part;
int digits;
char buf[11];
size_t sz;
int i;
struct stack stack;
char *p;
charcount = 0;
lastchar = -1;
if (BN_is_zero(b->number))
putcharwrap(f, '0');
int_part = new_number();
fract_part = new_number();
fract_part->scale = b->scale;
if (base <= 16)
digits = 1;
else {
digits = snprintf(buf, sizeof(buf), "%u", base-1);
}
split_number(b, int_part->number, fract_part->number);
i = 0;
stack_init(&stack);
while (!BN_is_zero(int_part->number)) {
BN_ULONG rem = BN_div_word(int_part->number, base);
stack_pushstring(&stack, get_digit(rem, digits, base));
i++;
}
sz = i;
if (BN_cmp(b->number, &zero) < 0)
putcharwrap(f, '-');
for (i = 0; i < sz; i++) {
p = stack_popstring(&stack);
if (base > 16)
putcharwrap(f, ' ');
printwrap(f, p);
free(p);
}
stack_clear(&stack);
if (b->scale > 0) {
struct number *num_base;
BIGNUM mult, stop;
putcharwrap(f, '.');
num_base = new_number();
bn_check(BN_set_word(num_base->number, base));
BN_init(&mult);
bn_check(BN_one(&mult));
BN_init(&stop);
bn_check(BN_one(&stop));
scale_number(&stop, b->scale);
i = 0;
while (BN_cmp(&mult, &stop) < 0) {
u_long rem;
if (i && base > 16)
putcharwrap(f, ' ');
i = 1;
bmul_number(fract_part, fract_part, num_base);
split_number(fract_part, int_part->number, NULL);
rem = BN_get_word(int_part->number);
p = get_digit(rem, digits, base);
int_part->scale = 0;
normalize(int_part, fract_part->scale);
bn_check(BN_sub(fract_part->number, fract_part->number,
int_part->number));
printwrap(f, p);
free(p);
bn_check(BN_mul_word(&mult, base));
}
free_number(num_base);
BN_free(&mult);
BN_free(&stop);
}
flushwrap(f);
free_number(int_part);
free_number(fract_part);
}
示例4: a2d_ASN1_OBJECT
int
a2d_ASN1_OBJECT(unsigned char *out, int olen, const char *buf, int num)
{
int i, first, len = 0, c, use_bn;
char ftmp[24], *tmp = ftmp;
int tmpsize = sizeof ftmp;
const char *p;
unsigned long l;
BIGNUM *bl = NULL;
if (num == 0)
return (0);
else if (num == -1)
num = strlen(buf);
p = buf;
c = *(p++);
num--;
if ((c >= '0') && (c <= '2')) {
first= c-'0';
} else {
ASN1err(ASN1_F_A2D_ASN1_OBJECT, ASN1_R_FIRST_NUM_TOO_LARGE);
goto err;
}
if (num <= 0) {
ASN1err(ASN1_F_A2D_ASN1_OBJECT, ASN1_R_MISSING_SECOND_NUMBER);
goto err;
}
c = *(p++);
num--;
for (;;) {
if (num <= 0)
break;
if ((c != '.') && (c != ' ')) {
ASN1err(ASN1_F_A2D_ASN1_OBJECT,
ASN1_R_INVALID_SEPARATOR);
goto err;
}
l = 0;
use_bn = 0;
for (;;) {
if (num <= 0)
break;
num--;
c = *(p++);
if ((c == ' ') || (c == '.'))
break;
if ((c < '0') || (c > '9')) {
ASN1err(ASN1_F_A2D_ASN1_OBJECT,
ASN1_R_INVALID_DIGIT);
goto err;
}
if (!use_bn && l >= ((ULONG_MAX - 80) / 10L)) {
use_bn = 1;
if (!bl)
bl = BN_new();
if (!bl || !BN_set_word(bl, l))
goto err;
}
if (use_bn) {
if (!BN_mul_word(bl, 10L) ||
!BN_add_word(bl, c-'0'))
goto err;
} else
l = l * 10L + (long)(c - '0');
}
if (len == 0) {
if ((first < 2) && (l >= 40)) {
ASN1err(ASN1_F_A2D_ASN1_OBJECT,
ASN1_R_SECOND_NUMBER_TOO_LARGE);
goto err;
}
if (use_bn) {
if (!BN_add_word(bl, first * 40))
goto err;
} else
l += (long)first * 40;
}
i = 0;
if (use_bn) {
int blsize;
blsize = BN_num_bits(bl);
blsize = (blsize + 6) / 7;
if (blsize > tmpsize) {
if (tmp != ftmp)
free(tmp);
tmpsize = blsize + 32;
tmp = malloc(tmpsize);
if (!tmp)
goto err;
}
while (blsize--)
tmp[i++] = (unsigned char)BN_div_word(bl, 0x80L);
} else {
for (;;) {
tmp[i++] = (unsigned char)l & 0x7f;
l >>= 7L;
if (l == 0L)
//.........这里部分代码省略.........
示例5: ec_GFp_simple_group_check_discriminant
int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
{
int ret = 0;
BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
const BIGNUM *p = group->field;
BN_CTX *new_ctx = NULL;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT,
ERR_R_MALLOC_FAILURE);
goto err;
}
}
BN_CTX_start(ctx);
a = BN_CTX_get(ctx);
b = BN_CTX_get(ctx);
tmp_1 = BN_CTX_get(ctx);
tmp_2 = BN_CTX_get(ctx);
order = BN_CTX_get(ctx);
if (order == NULL)
goto err;
if (group->meth->field_decode) {
if (!group->meth->field_decode(group, a, group->a, ctx))
goto err;
if (!group->meth->field_decode(group, b, group->b, ctx))
goto err;
} else {
if (!BN_copy(a, group->a))
goto err;
if (!BN_copy(b, group->b))
goto err;
}
/*-
* check the discriminant:
* y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
* 0 =< a, b < p
*/
if (BN_is_zero(a)) {
if (BN_is_zero(b))
goto err;
} else if (!BN_is_zero(b)) {
if (!BN_mod_sqr(tmp_1, a, p, ctx))
goto err;
if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
goto err;
if (!BN_lshift(tmp_1, tmp_2, 2))
goto err;
/* tmp_1 = 4*a^3 */
if (!BN_mod_sqr(tmp_2, b, p, ctx))
goto err;
if (!BN_mul_word(tmp_2, 27))
goto err;
/* tmp_2 = 27*b^2 */
if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
goto err;
if (BN_is_zero(a))
goto err;
}
ret = 1;
err:
if (ctx != NULL)
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
示例6: BN_mul_word
BN& BN::operator*=(unsigned mul)
{
BN_mul_word(BNP, mul);
return *this;
}
示例7: result
BN BN::operator*(unsigned mul) const
{
BN result(*this);
BN_mul_word(PTR(result.dp), mul);
return result;
}
示例8: NativeBN_BN_mul_word
/**
* public static native boolean BN_mul_word(int, int)
*/
static jboolean NativeBN_BN_mul_word(JNIEnv* env, jclass cls, BIGNUM *a, BN_ULONG w) {
if (!oneValidHandle(env, a)) return FALSE;
return BN_mul_word(a, w);
}
示例9: Java_java_math_NativeBN_BN_1mul_1word
extern "C" void Java_java_math_NativeBN_BN_1mul_1word(JNIEnv* env, jclass, jlong a, BN_ULONG w) {
if (!oneValidHandle(env, a)) return;
BN_mul_word(toBigNum(a), w);
throwExceptionIfNecessary(env);
}