本文整理汇总了C++中BN_mod_mul函数的典型用法代码示例。如果您正苦于以下问题:C++ BN_mod_mul函数的具体用法?C++ BN_mod_mul怎么用?C++ BN_mod_mul使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了BN_mod_mul函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: blinded_modexp
/**
* blinded_modexp(r, a, priv):
* Compute ${r} = ${a}^(2^258 + ${priv}), where ${r} and ${priv} are treated
* as big-endian integers; and avoid leaking timing data in this process.
*/
static int
blinded_modexp(uint8_t r[CRYPTO_DH_PUBLEN], BIGNUM * a,
const uint8_t priv[CRYPTO_DH_PRIVLEN])
{
BIGNUM * two_exp_256_bn;
BIGNUM * priv_bn;
uint8_t blinding[CRYPTO_DH_PRIVLEN];
BIGNUM * blinding_bn;
BIGNUM * priv_blinded;
BIGNUM * m_bn;
BN_CTX * ctx;
BIGNUM * r1;
BIGNUM * r2;
size_t rlen;
/* Construct 2^256 in BN representation. */
if ((two_exp_256_bn = BN_bin2bn(two_exp_256, 33, NULL)) == NULL) {
warn0("%s", ERR_error_string(ERR_get_error(), NULL));
goto err0;
}
/* Construct 2^258 + ${priv} in BN representation. */
if ((priv_bn = BN_bin2bn(priv, CRYPTO_DH_PRIVLEN, NULL)) == NULL) {
warn0("%s", ERR_error_string(ERR_get_error(), NULL));
goto err1;
}
if ((!BN_add(priv_bn, priv_bn, two_exp_256_bn)) ||
(!BN_add(priv_bn, priv_bn, two_exp_256_bn)) ||
(!BN_add(priv_bn, priv_bn, two_exp_256_bn)) ||
(!BN_add(priv_bn, priv_bn, two_exp_256_bn))) {
warn0("%s", ERR_error_string(ERR_get_error(), NULL));
goto err2;
}
/* Generate blinding exponent. */
if (crypto_entropy_read(blinding, CRYPTO_DH_PRIVLEN))
goto err2;
if ((blinding_bn = BN_bin2bn(blinding,
CRYPTO_DH_PRIVLEN, NULL)) == NULL) {
warn0("%s", ERR_error_string(ERR_get_error(), NULL));
goto err2;
}
if (!BN_add(blinding_bn, blinding_bn, two_exp_256_bn)) {
warn0("%s", ERR_error_string(ERR_get_error(), NULL));
goto err3;
}
/* Generate blinded exponent. */
if ((priv_blinded = BN_new()) == NULL) {
warn0("%s", ERR_error_string(ERR_get_error(), NULL));
goto err3;
}
if (!BN_sub(priv_blinded, priv_bn, blinding_bn)) {
warn0("%s", ERR_error_string(ERR_get_error(), NULL));
goto err4;
}
/* Construct group #14 modulus in BN representation. */
if ((m_bn = BN_bin2bn(crypto_dh_group14, 256, NULL)) == NULL) {
warn0("%s", ERR_error_string(ERR_get_error(), NULL));
goto err4;
}
/* Allocate BN context. */
if ((ctx = BN_CTX_new()) == NULL) {
warn0("%s", ERR_error_string(ERR_get_error(), NULL));
goto err5;
}
/* Allocate space for storing results of exponentiations. */
if ((r1 = BN_new()) == NULL) {
warn0("%s", ERR_error_string(ERR_get_error(), NULL));
goto err6;
}
if ((r2 = BN_new()) == NULL) {
warn0("%s", ERR_error_string(ERR_get_error(), NULL));
goto err7;
}
/* Perform modular exponentiations. */
if (!BN_mod_exp(r1, a, blinding_bn, m_bn, ctx)) {
warn0("%s", ERR_error_string(ERR_get_error(), NULL));
goto err8;
}
if (!BN_mod_exp(r2, a, priv_blinded, m_bn, ctx)) {
warn0("%s", ERR_error_string(ERR_get_error(), NULL));
goto err8;
}
/* Compute final result and export to big-endian integer format. */
if (!BN_mod_mul(r1, r1, r2, m_bn, ctx)) {
warn0("%s", ERR_error_string(ERR_get_error(), NULL));
goto err8;
}
rlen = BN_num_bytes(r1);
//.........这里部分代码省略.........
示例2: OPENSSL_PUT_ERROR
ECDSA_SIG *ECDSA_do_sign_ex(const uint8_t *digest, size_t digest_len,
const BIGNUM *in_kinv, const BIGNUM *in_r,
const EC_KEY *eckey) {
int ok = 0;
BIGNUM *kinv = NULL, *s, *m = NULL, *tmp = NULL;
const BIGNUM *ckinv;
BN_CTX *ctx = NULL;
const EC_GROUP *group;
ECDSA_SIG *ret;
const BIGNUM *priv_key;
if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED);
return NULL;
}
group = EC_KEY_get0_group(eckey);
priv_key = EC_KEY_get0_private_key(eckey);
if (group == NULL || priv_key == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
ret = ECDSA_SIG_new();
if (!ret) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
return NULL;
}
s = ret->s;
if ((ctx = BN_CTX_new()) == NULL ||
(tmp = BN_new()) == NULL ||
(m = BN_new()) == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
goto err;
}
const BIGNUM *order = EC_GROUP_get0_order(group);
if (!digest_to_bn(m, digest, digest_len, order)) {
goto err;
}
for (;;) {
if (in_kinv == NULL || in_r == NULL) {
if (!ecdsa_sign_setup(eckey, ctx, &kinv, &ret->r, digest, digest_len)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_ECDSA_LIB);
goto err;
}
ckinv = kinv;
} else {
ckinv = in_kinv;
if (BN_copy(ret->r, in_r) == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
goto err;
}
}
if (!BN_mod_mul(tmp, priv_key, ret->r, order, ctx)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_add_quick(s, tmp, m, order)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_mul(s, s, ckinv, order, ctx)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
goto err;
}
if (BN_is_zero(s)) {
// if kinv and r have been supplied by the caller
// don't to generate new kinv and r values
if (in_kinv != NULL && in_r != NULL) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NEED_NEW_SETUP_VALUES);
goto err;
}
} else {
// s != 0 => we have a valid signature
break;
}
}
ok = 1;
err:
if (!ok) {
ECDSA_SIG_free(ret);
ret = NULL;
}
BN_CTX_free(ctx);
BN_clear_free(m);
BN_clear_free(tmp);
BN_clear_free(kinv);
return ret;
}
示例3: jpake_key_confirm
/* Shared parts of key derivation and confirmation calculation */
void
jpake_key_confirm(struct modp_group *grp, BIGNUM *s, BIGNUM *step2_val,
BIGNUM *mypriv2, BIGNUM *mypub1, BIGNUM *mypub2,
BIGNUM *theirpub1, BIGNUM *theirpub2,
const u_char *my_id, u_int my_id_len,
const u_char *their_id, u_int their_id_len,
const u_char *sess_id, u_int sess_id_len,
const u_char *theirpriv2_s_proof, u_int theirpriv2_s_proof_len,
BIGNUM **k,
u_char **confirm_hash, u_int *confirm_hash_len)
{
BN_CTX *bn_ctx;
BIGNUM *tmp;
if ((bn_ctx = BN_CTX_new()) == NULL)
fatal("%s: BN_CTX_new", __func__);
if ((tmp = BN_new()) == NULL ||
(*k = BN_new()) == NULL)
fatal("%s: BN_new", __func__);
/* Validate step 2 values */
if (BN_cmp(step2_val, BN_value_one()) <= 0)
fatal("%s: step2_val <= 1", __func__);
if (BN_cmp(step2_val, grp->p) >= 0)
fatal("%s: step2_val >= p", __func__);
/*
* theirpriv2_s_proof is calculated with a different generator:
* tmp = g^(mypriv1+mypriv2+theirpub1) = g^mypub1*g^mypub2*g^theirpub1
* Calculate it here so we can check the signature.
*/
if (BN_mod_mul(tmp, mypub1, mypub2, grp->p, bn_ctx) != 1)
fatal("%s: BN_mod_mul (tmp = mypub1 * mypub2 mod p)", __func__);
if (BN_mod_mul(tmp, tmp, theirpub1, grp->p, bn_ctx) != 1)
fatal("%s: BN_mod_mul (tmp = tmp * theirpub1 mod p)", __func__);
JPAKE_DEBUG_BN((tmp, "%s: tmp = ", __func__));
if (schnorr_verify_buf(grp->p, grp->q, tmp, step2_val,
their_id, their_id_len,
theirpriv2_s_proof, theirpriv2_s_proof_len) != 1)
fatal("%s: schnorr_verify theirpriv2_s_proof failed", __func__);
/*
* Derive shared key:
* client: k = (b / g^(x2*x4*s))^x2 = g^((x1+x3)*x2*x4*s)
* server: k = (a / g^(x2*x4*s))^x4 = g^((x1+x3)*x2*x4*s)
*
* Computed as:
* client: k = (g_x4^(q - (x2 * s)) * b)^x2 mod p
* server: k = (g_x2^(q - (x4 * s)) * b)^x4 mod p
*/
if (BN_mul(tmp, mypriv2, s, bn_ctx) != 1)
fatal("%s: BN_mul (tmp = mypriv2 * s)", __func__);
if (BN_mod_sub(tmp, grp->q, tmp, grp->q, bn_ctx) != 1)
fatal("%s: BN_mod_sub (tmp = q - tmp mod q)", __func__);
if (BN_mod_exp(tmp, theirpub2, tmp, grp->p, bn_ctx) != 1)
fatal("%s: BN_mod_exp (tmp = theirpub2^tmp) mod p", __func__);
if (BN_mod_mul(tmp, tmp, step2_val, grp->p, bn_ctx) != 1)
fatal("%s: BN_mod_mul (tmp = tmp * step2_val) mod p", __func__);
if (BN_mod_exp(*k, tmp, mypriv2, grp->p, bn_ctx) != 1)
fatal("%s: BN_mod_exp (k = tmp^mypriv2) mod p", __func__);
BN_CTX_free(bn_ctx);
BN_clear_free(tmp);
jpake_confirm_hash(*k, my_id, my_id_len, sess_id, sess_id_len,
confirm_hash, confirm_hash_len);
}
示例4: ecdsa_do_sign
static ECDSA_SIG *
ecdsa_do_sign(const unsigned char *dgst, int dgst_len,
const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *eckey)
{
int ok = 0, i;
BIGNUM *kinv = NULL, *s, *m = NULL, *tmp = NULL, *order = NULL;
const BIGNUM *ckinv;
BN_CTX *ctx = NULL;
const EC_GROUP *group;
ECDSA_SIG *ret;
ECDSA_DATA *ecdsa;
const BIGNUM *priv_key;
ecdsa = ecdsa_check(eckey);
group = EC_KEY_get0_group(eckey);
priv_key = EC_KEY_get0_private_key(eckey);
if (group == NULL || priv_key == NULL || ecdsa == NULL) {
ECDSAerror(ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
ret = ECDSA_SIG_new();
if (!ret) {
ECDSAerror(ERR_R_MALLOC_FAILURE);
return NULL;
}
s = ret->s;
if ((ctx = BN_CTX_new()) == NULL || (order = BN_new()) == NULL ||
(tmp = BN_new()) == NULL || (m = BN_new()) == NULL) {
ECDSAerror(ERR_R_MALLOC_FAILURE);
goto err;
}
if (!EC_GROUP_get_order(group, order, ctx)) {
ECDSAerror(ERR_R_EC_LIB);
goto err;
}
i = BN_num_bits(order);
/* Need to truncate digest if it is too long: first truncate whole
* bytes.
*/
if (8 * dgst_len > i)
dgst_len = (i + 7)/8;
if (!BN_bin2bn(dgst, dgst_len, m)) {
ECDSAerror(ERR_R_BN_LIB);
goto err;
}
/* If still too long truncate remaining bits with a shift */
if ((8 * dgst_len > i) && !BN_rshift(m, m, 8 - (i & 0x7))) {
ECDSAerror(ERR_R_BN_LIB);
goto err;
}
do {
if (in_kinv == NULL || in_r == NULL) {
if (!ECDSA_sign_setup(eckey, ctx, &kinv, &ret->r)) {
ECDSAerror(ERR_R_ECDSA_LIB);
goto err;
}
ckinv = kinv;
} else {
ckinv = in_kinv;
if (BN_copy(ret->r, in_r) == NULL) {
ECDSAerror(ERR_R_MALLOC_FAILURE);
goto err;
}
}
if (!BN_mod_mul(tmp, priv_key, ret->r, order, ctx)) {
ECDSAerror(ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_add_quick(s, tmp, m, order)) {
ECDSAerror(ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_mul(s, s, ckinv, order, ctx)) {
ECDSAerror(ERR_R_BN_LIB);
goto err;
}
if (BN_is_zero(s)) {
/* if kinv and r have been supplied by the caller
* don't to generate new kinv and r values */
if (in_kinv != NULL && in_r != NULL) {
ECDSAerror(ECDSA_R_NEED_NEW_SETUP_VALUES);
goto err;
}
} else
/* s != 0 => we have a valid signature */
break;
} while (1);
ok = 1;
err:
if (!ok) {
ECDSA_SIG_free(ret);
ret = NULL;
}
//.........这里部分代码省略.........
示例5: RSA_check_key
int RSA_check_key(RSA *key)
{
BIGNUM *i, *j, *k, *l, *m;
BN_CTX *ctx;
int r;
int ret=1;
i = BN_new();
j = BN_new();
k = BN_new();
l = BN_new();
m = BN_new();
ctx = BN_CTX_new();
if (i == NULL || j == NULL || k == NULL || l == NULL ||
m == NULL || ctx == NULL)
{
ret = -1;
RSAerr(RSA_F_RSA_CHECK_KEY, ERR_R_MALLOC_FAILURE);
goto err;
}
/* p prime? */
r = BN_is_prime(key->p, BN_prime_checks, NULL, NULL, NULL);
if (r != 1)
{
ret = r;
if (r != 0)
goto err;
RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_P_NOT_PRIME);
}
/* q prime? */
r = BN_is_prime(key->q, BN_prime_checks, NULL, NULL, NULL);
if (r != 1)
{
ret = r;
if (r != 0)
goto err;
RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_Q_NOT_PRIME);
}
/* n = p*q? */
r = BN_mul(i, key->p, key->q, ctx);
if (!r) { ret = -1; goto err; }
if (BN_cmp(i, key->n) != 0)
{
ret = 0;
RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_N_DOES_NOT_EQUAL_P_Q);
}
/* d*e = 1 mod lcm(p-1,q-1)? */
r = BN_sub(i, key->p, BN_value_one());
if (!r) { ret = -1; goto err; }
r = BN_sub(j, key->q, BN_value_one());
if (!r) { ret = -1; goto err; }
/* now compute k = lcm(i,j) */
r = BN_mul(l, i, j, ctx);
if (!r) { ret = -1; goto err; }
r = BN_gcd(m, i, j, ctx);
if (!r) { ret = -1; goto err; }
r = BN_div(k, NULL, l, m, ctx); /* remainder is 0 */
if (!r) { ret = -1; goto err; }
r = BN_mod_mul(i, key->d, key->e, k, ctx);
if (!r) { ret = -1; goto err; }
if (!BN_is_one(i))
{
ret = 0;
RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_D_E_NOT_CONGRUENT_TO_1);
}
if (key->dmp1 != NULL && key->dmq1 != NULL && key->iqmp != NULL)
{
/* dmp1 = d mod (p-1)? */
r = BN_sub(i, key->p, BN_value_one());
if (!r) { ret = -1; goto err; }
r = BN_mod(j, key->d, i, ctx);
if (!r) { ret = -1; goto err; }
if (BN_cmp(j, key->dmp1) != 0)
{
ret = 0;
RSAerr(RSA_F_RSA_CHECK_KEY,
RSA_R_DMP1_NOT_CONGRUENT_TO_D);
}
/* dmq1 = d mod (q-1)? */
r = BN_sub(i, key->q, BN_value_one());
if (!r) { ret = -1; goto err; }
r = BN_mod(j, key->d, i, ctx);
if (!r) { ret = -1; goto err; }
if (BN_cmp(j, key->dmq1) != 0)
{
//.........这里部分代码省略.........
示例6: VKO_compute_key
/* Implementation of CryptoPro VKO 34.10-2001/2012 algorithm */
static int VKO_compute_key(unsigned char *shared_key, size_t shared_key_size,
const EC_POINT *pub_key, EC_KEY *priv_key,
const unsigned char *ukm, int dgst_nid)
{
unsigned char *databuf = NULL, *hashbuf = NULL;
BIGNUM *UKM = NULL, *p = NULL, *order = NULL, *X = NULL, *Y = NULL;
const BIGNUM *key = EC_KEY_get0_private_key(priv_key);
EC_POINT *pnt = EC_POINT_new(EC_KEY_get0_group(priv_key));
int i;
BN_CTX *ctx = BN_CTX_new();
EVP_MD_CTX mdctx;
const EVP_MD *md;
int effective_dgst_nid = (dgst_nid == NID_id_GostR3411_2012_512) ?
NID_id_GostR3411_2012_256 : dgst_nid;
int buf_len = (dgst_nid == NID_id_GostR3411_2012_512) ? 128 : 64,
half_len = buf_len >> 1;
if (!ctx) {
GOSTerr(GOST_F_VKO_COMPUTE_KEY, ERR_R_MALLOC_FAILURE);
return 0;
}
BN_CTX_start(ctx);
databuf = OPENSSL_malloc(buf_len);
hashbuf = OPENSSL_malloc(buf_len);
if (!databuf || !hashbuf) {
GOSTerr(GOST_F_VKO_COMPUTE_KEY, ERR_R_MALLOC_FAILURE);
goto err;
}
md = EVP_get_digestbynid(effective_dgst_nid);
if (!md) {
GOSTerr(GOST_F_VKO_COMPUTE_KEY, GOST_R_INVALID_DIGEST_TYPE);
goto err;
}
UKM = hashsum2bn(ukm, 8);
p = BN_CTX_get(ctx);
order = BN_CTX_get(ctx);
X = BN_CTX_get(ctx);
Y = BN_CTX_get(ctx);
EC_GROUP_get_order(EC_KEY_get0_group(priv_key), order, ctx);
BN_mod_mul(p, key, UKM, order, ctx);
if (!EC_POINT_mul
(EC_KEY_get0_group(priv_key), pnt, NULL, pub_key, p, ctx)) {
GOSTerr(GOST_F_VKO_COMPUTE_KEY, GOST_R_ERROR_POINT_MUL);
goto err;
}
EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(priv_key),
pnt, X, Y, ctx);
/*
* Serialize elliptic curve point same way as we do it when saving key
*/
store_bignum(Y, databuf, half_len);
store_bignum(X, databuf + half_len, half_len);
/* And reverse byte order of whole buffer */
for (i = 0; i < buf_len; i++) {
hashbuf[buf_len - 1 - i] = databuf[i];
}
EVP_MD_CTX_init(&mdctx);
EVP_DigestInit_ex(&mdctx, md, NULL);
EVP_DigestUpdate(&mdctx, hashbuf, buf_len);
EVP_DigestFinal_ex(&mdctx, shared_key, NULL);
EVP_MD_CTX_cleanup(&mdctx);
err:
BN_free(UKM);
BN_CTX_end(ctx);
BN_CTX_free(ctx);
EC_POINT_free(pnt);
if (databuf)
OPENSSL_free(databuf);
if (hashbuf)
OPENSSL_free(hashbuf);
return 32;
}
示例7: ecdsa_check
static ECDSA_SIG *ecdsa_do_sign(const unsigned char *dgst, int dgst_len,
const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *eckey)
{
int ok = 0;
BIGNUM *kinv=NULL, *s, *m=NULL,*tmp=NULL,*order=NULL;
const BIGNUM *ckinv;
BN_CTX *ctx = NULL;
const EC_GROUP *group;
ECDSA_SIG *ret;
ECDSA_DATA *ecdsa;
const BIGNUM *priv_key;
ecdsa = ecdsa_check(eckey);
group = EC_KEY_get0_group(eckey);
priv_key = EC_KEY_get0_private_key(eckey);
if (group == NULL || priv_key == NULL || ecdsa == NULL)
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
ret = ECDSA_SIG_new();
if (!ret)
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
return NULL;
}
s = ret->s;
if ((ctx = BN_CTX_new()) == NULL || (order = BN_new()) == NULL ||
(tmp = BN_new()) == NULL || (m = BN_new()) == NULL)
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!EC_GROUP_get_order(group, order, ctx))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_EC_LIB);
goto err;
}
if (dgst_len > BN_num_bytes(order))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN,
ECDSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
goto err;
}
if (!BN_bin2bn(dgst, dgst_len, m))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
}
do
{
if (in_kinv == NULL || in_r == NULL)
{
if (!ECDSA_sign_setup(eckey, ctx, &kinv, &ret->r))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN,ERR_R_ECDSA_LIB);
goto err;
}
ckinv = kinv;
}
else
{
ckinv = in_kinv;
if (BN_copy(ret->r, in_r) == NULL)
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE);
goto err;
}
}
if (!BN_mod_mul(tmp, priv_key, ret->r, order, ctx))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_add_quick(s, tmp, m, order))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_mul(s, s, ckinv, order, ctx))
{
ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB);
goto err;
}
}
while (BN_is_zero(s));
ok = 1;
err:
if (!ok)
{
ECDSA_SIG_free(ret);
ret = NULL;
}
//.........这里部分代码省略.........
示例8: test_mont
int test_mont(BIO *bp, BN_CTX *ctx)
{
BIGNUM a,b,c,d,A,B;
BIGNUM n;
int i;
BN_MONT_CTX *mont;
BN_init(&a);
BN_init(&b);
BN_init(&c);
BN_init(&d);
BN_init(&A);
BN_init(&B);
BN_init(&n);
mont=BN_MONT_CTX_new();
BN_bntest_rand(&a,100,0,0); /**/
BN_bntest_rand(&b,100,0,0); /**/
for (i=0; i<num2; i++)
{
int bits = (200*(i+1))/num2;
if (bits == 0)
continue;
BN_bntest_rand(&n,bits,0,1);
BN_MONT_CTX_set(mont,&n,ctx);
BN_nnmod(&a,&a,&n,ctx);
BN_nnmod(&b,&b,&n,ctx);
BN_to_montgomery(&A,&a,mont,ctx);
BN_to_montgomery(&B,&b,mont,ctx);
BN_mod_mul_montgomery(&c,&A,&B,mont,ctx);/**/
BN_from_montgomery(&A,&c,mont,ctx);/**/
if (bp != NULL)
{
if (!results)
{
#ifdef undef
fprintf(stderr,"%d * %d %% %d\n",
BN_num_bits(&a),
BN_num_bits(&b),
BN_num_bits(mont->N));
#endif
BN_print(bp,&a);
BIO_puts(bp," * ");
BN_print(bp,&b);
BIO_puts(bp," % ");
BN_print(bp,&(mont->N));
BIO_puts(bp," - ");
}
BN_print(bp,&A);
BIO_puts(bp,"\n");
}
BN_mod_mul(&d,&a,&b,&n,ctx);
BN_sub(&d,&d,&A);
if(!BN_is_zero(&d))
{
fprintf(stderr,"Montgomery multiplication test failed!\n");
return 0;
}
}
BN_MONT_CTX_free(mont);
BN_free(&a);
BN_free(&b);
BN_free(&c);
BN_free(&d);
BN_free(&A);
BN_free(&B);
BN_free(&n);
return(1);
}
示例9: test_mod_mul
int test_mod_mul(BIO *bp, BN_CTX *ctx)
{
BIGNUM *a,*b,*c,*d,*e;
int i,j;
a=BN_new();
b=BN_new();
c=BN_new();
d=BN_new();
e=BN_new();
for (j=0; j<3; j++) {
BN_bntest_rand(c,1024,0,0); /**/
for (i=0; i<num0; i++)
{
BN_bntest_rand(a,475+i*10,0,0); /**/
BN_bntest_rand(b,425+i*11,0,0); /**/
a->neg=rand_neg();
b->neg=rand_neg();
if (!BN_mod_mul(e,a,b,c,ctx))
{
unsigned long l;
while ((l=ERR_get_error()))
fprintf(stderr,"ERROR:%s\n",
ERR_error_string(l,NULL));
EXIT(1);
}
if (bp != NULL)
{
if (!results)
{
BN_print(bp,a);
BIO_puts(bp," * ");
BN_print(bp,b);
BIO_puts(bp," % ");
BN_print(bp,c);
if ((a->neg ^ b->neg) && !BN_is_zero(e))
{
/* If (a*b) % c is negative, c must be added
* in order to obtain the normalized remainder
* (new with OpenSSL 0.9.7, previous versions of
* BN_mod_mul could generate negative results)
*/
BIO_puts(bp," + ");
BN_print(bp,c);
}
BIO_puts(bp," - ");
}
BN_print(bp,e);
BIO_puts(bp,"\n");
}
BN_mul(d,a,b,ctx);
BN_sub(d,d,e);
BN_div(a,b,d,c,ctx);
if(!BN_is_zero(b))
{
fprintf(stderr,"Modulo multiply test failed!\n");
ERR_print_errors_fp(stderr);
return 0;
}
}
}
BN_free(a);
BN_free(b);
BN_free(c);
BN_free(d);
BN_free(e);
return(1);
}
示例10: BN_new
//.........这里部分代码省略.........
* Thus for
* b := (2*a)^((|p|-5)/8),
* i := (2*a)*b^2
* we have
* i^2 = (2*a)^((1 + (|p|-5)/4)*2)
* = (2*a)^((p-1)/2)
* = -1;
* so if we set
* x := a*b*(i-1),
* then
* x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
* = a^2 * b^2 * (-2*i)
* = a*(-i)*(2*a*b^2)
* = a*(-i)*i
* = a.
*
* (This is due to A.O.L. Atkin,
* <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
* November 1992.)
*/
/* t := 2*a */
if (!BN_mod_lshift1_quick(t, A, p)) goto end;
/* b := (2*a)^((|p|-5)/8) */
if (!BN_rshift(q, p, 3)) goto end;
q->neg = 0;
if (!BN_mod_exp(b, t, q, p, ctx)) goto end;
/* y := b^2 */
if (!BN_mod_sqr(y, b, p, ctx)) goto end;
/* t := (2*a)*b^2 - 1*/
if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
if (!BN_sub_word(t, 1)) goto end;
/* x = a*b*t */
if (!BN_mod_mul(x, A, b, p, ctx)) goto end;
if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
if (!BN_copy(ret, x)) goto end;
err = 0;
goto vrfy;
}
/* e > 2, so we really have to use the Tonelli/Shanks algorithm.
* First, find some y that is not a square. */
if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
q->neg = 0;
i = 2;
do
{
/* For efficiency, try small numbers first;
* if this fails, try random numbers.
*/
if (i < 22)
{
if (!BN_set_word(y, i)) goto end;
}
else
{
if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
if (BN_ucmp(y, p) >= 0)
{
if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
}
示例11: ec_GFp_simple_set_compressed_coordinates
int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *group,
EC_POINT *point,
const BIGNUM *x_, int y_bit,
BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
BIGNUM *tmp1, *tmp2, *x, *y;
int ret = 0;
/* clear error queue */
ERR_clear_error();
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
y_bit = (y_bit != 0);
BN_CTX_start(ctx);
tmp1 = BN_CTX_get(ctx);
tmp2 = BN_CTX_get(ctx);
x = BN_CTX_get(ctx);
y = BN_CTX_get(ctx);
if (y == NULL)
goto err;
/*-
* Recover y. We have a Weierstrass equation
* y^2 = x^3 + a*x + b,
* so y is one of the square roots of x^3 + a*x + b.
*/
/* tmp1 := x^3 */
if (!BN_nnmod(x, x_, group->field, ctx))
goto err;
if (group->meth->field_decode == 0) {
/* field_{sqr,mul} work on standard representation */
if (!group->meth->field_sqr(group, tmp2, x_, ctx))
goto err;
if (!group->meth->field_mul(group, tmp1, tmp2, x_, ctx))
goto err;
} else {
if (!BN_mod_sqr(tmp2, x_, group->field, ctx))
goto err;
if (!BN_mod_mul(tmp1, tmp2, x_, group->field, ctx))
goto err;
}
/* tmp1 := tmp1 + a*x */
if (group->a_is_minus3) {
if (!BN_mod_lshift1_quick(tmp2, x, group->field))
goto err;
if (!BN_mod_add_quick(tmp2, tmp2, x, group->field))
goto err;
if (!BN_mod_sub_quick(tmp1, tmp1, tmp2, group->field))
goto err;
} else {
if (group->meth->field_decode) {
if (!group->meth->field_decode(group, tmp2, group->a, ctx))
goto err;
if (!BN_mod_mul(tmp2, tmp2, x, group->field, ctx))
goto err;
} else {
/* field_mul works on standard representation */
if (!group->meth->field_mul(group, tmp2, group->a, x, ctx))
goto err;
}
if (!BN_mod_add_quick(tmp1, tmp1, tmp2, group->field))
goto err;
}
/* tmp1 := tmp1 + b */
if (group->meth->field_decode) {
if (!group->meth->field_decode(group, tmp2, group->b, ctx))
goto err;
if (!BN_mod_add_quick(tmp1, tmp1, tmp2, group->field))
goto err;
} else {
if (!BN_mod_add_quick(tmp1, tmp1, group->b, group->field))
goto err;
}
if (!BN_mod_sqrt(y, tmp1, group->field, ctx)) {
unsigned long err = ERR_peek_last_error();
if (ERR_GET_LIB(err) == ERR_LIB_BN
&& ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) {
ERR_clear_error();
ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES,
EC_R_INVALID_COMPRESSED_POINT);
} else
ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES,
ERR_R_BN_LIB);
goto err;
}
if (y_bit != BN_is_odd(y)) {
//.........这里部分代码省略.........
示例12: ec_GFp_simple_group_check_discriminant
int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) {
int ret = 0;
BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
const BIGNUM *p = &group->field;
BN_CTX *new_ctx = NULL;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
goto err;
}
}
BN_CTX_start(ctx);
a = BN_CTX_get(ctx);
b = BN_CTX_get(ctx);
tmp_1 = BN_CTX_get(ctx);
tmp_2 = BN_CTX_get(ctx);
order = BN_CTX_get(ctx);
if (order == NULL) {
goto err;
}
if (group->meth->field_decode) {
if (!group->meth->field_decode(group, a, &group->a, ctx) ||
!group->meth->field_decode(group, b, &group->b, ctx)) {
goto err;
}
} else {
if (!BN_copy(a, &group->a) || !BN_copy(b, &group->b)) {
goto err;
}
}
/* check the discriminant:
* y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
* 0 =< a, b < p */
if (BN_is_zero(a)) {
if (BN_is_zero(b)) {
goto err;
}
} else if (!BN_is_zero(b)) {
if (!BN_mod_sqr(tmp_1, a, p, ctx) ||
!BN_mod_mul(tmp_2, tmp_1, a, p, ctx) ||
!BN_lshift(tmp_1, tmp_2, 2)) {
goto err;
}
/* tmp_1 = 4*a^3 */
if (!BN_mod_sqr(tmp_2, b, p, ctx) ||
!BN_mul_word(tmp_2, 27)) {
goto err;
}
/* tmp_2 = 27*b^2 */
if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx) ||
BN_is_zero(a)) {
goto err;
}
}
ret = 1;
err:
if (ctx != NULL) {
BN_CTX_end(ctx);
}
BN_CTX_free(new_ctx);
return ret;
}
示例13: pgp_elgamal_encrypt
int
pgp_elgamal_encrypt(PGP_PubKey * pk, PGP_MPI * _m,
PGP_MPI ** c1_p, PGP_MPI ** c2_p)
{
int res = PXE_PGP_MATH_FAILED;
int k_bits;
BIGNUM *m = mpi_to_bn(_m);
BIGNUM *p = mpi_to_bn(pk->pub.elg.p);
BIGNUM *g = mpi_to_bn(pk->pub.elg.g);
BIGNUM *y = mpi_to_bn(pk->pub.elg.y);
BIGNUM *k = BN_new();
BIGNUM *yk = BN_new();
BIGNUM *c1 = BN_new();
BIGNUM *c2 = BN_new();
BN_CTX *tmp = BN_CTX_new();
if (!m || !p || !g || !y || !k || !yk || !c1 || !c2 || !tmp)
goto err;
/*
* generate k
*/
k_bits = decide_k_bits(BN_num_bits(p));
if (!BN_rand(k, k_bits, 0, 0))
goto err;
/*
* c1 = g^k c2 = m * y^k
*/
if (!BN_mod_exp(c1, g, k, p, tmp))
goto err;
if (!BN_mod_exp(yk, y, k, p, tmp))
goto err;
if (!BN_mod_mul(c2, m, yk, p, tmp))
goto err;
/* result */
*c1_p = bn_to_mpi(c1);
*c2_p = bn_to_mpi(c2);
if (*c1_p && *c2_p)
res = 0;
err:
if (tmp)
BN_CTX_free(tmp);
if (c2)
BN_clear_free(c2);
if (c1)
BN_clear_free(c1);
if (yk)
BN_clear_free(yk);
if (k)
BN_clear_free(k);
if (y)
BN_clear_free(y);
if (g)
BN_clear_free(g);
if (p)
BN_clear_free(p);
if (m)
BN_clear_free(m);
return res;
}
示例14: bn_miller_rabin_is_prime
/*
* Refer to FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test.
* OR C.3.1 Miller-Rabin Probabilistic Primality Test (if enhanced is zero).
* The Step numbers listed in the code refer to the enhanced case.
*
* if enhanced is set, then status returns one of the following:
* BN_PRIMETEST_PROBABLY_PRIME
* BN_PRIMETEST_COMPOSITE_WITH_FACTOR
* BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME
* if enhanced is zero, then status returns either
* BN_PRIMETEST_PROBABLY_PRIME or
* BN_PRIMETEST_COMPOSITE
*
* returns 0 if there was an error, otherwise it returns 1.
*/
int bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx,
BN_GENCB *cb, int enhanced, int *status)
{
int i, j, a, ret = 0;
BIGNUM *g, *w1, *w3, *x, *m, *z, *b;
BN_MONT_CTX *mont = NULL;
/* w must be odd */
if (!BN_is_odd(w))
return 0;
BN_CTX_start(ctx);
g = BN_CTX_get(ctx);
w1 = BN_CTX_get(ctx);
w3 = BN_CTX_get(ctx);
x = BN_CTX_get(ctx);
m = BN_CTX_get(ctx);
z = BN_CTX_get(ctx);
b = BN_CTX_get(ctx);
if (!(b != NULL
/* w1 := w - 1 */
&& BN_copy(w1, w)
&& BN_sub_word(w1, 1)
/* w3 := w - 3 */
&& BN_copy(w3, w)
&& BN_sub_word(w3, 3)))
goto err;
/* check w is larger than 3, otherwise the random b will be too small */
if (BN_is_zero(w3) || BN_is_negative(w3))
goto err;
/* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */
a = 1;
while (!BN_is_bit_set(w1, a))
a++;
/* (Step 2) m = (w-1) / 2^a */
if (!BN_rshift(m, w1, a))
goto err;
/* Montgomery setup for computations mod a */
mont = BN_MONT_CTX_new();
if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx))
goto err;
if (iterations == BN_prime_checks)
iterations = BN_prime_checks_for_size(BN_num_bits(w));
/* (Step 4) */
for (i = 0; i < iterations; ++i) {
/* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */
if (!BN_priv_rand_range(b, w3) || !BN_add_word(b, 2)) /* 1 < b < w-1 */
goto err;
if (enhanced) {
/* (Step 4.3) */
if (!BN_gcd(g, b, w, ctx))
goto err;
/* (Step 4.4) */
if (!BN_is_one(g)) {
*status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
ret = 1;
goto err;
}
}
/* (Step 4.5) z = b^m mod w */
if (!BN_mod_exp_mont(z, b, m, w, ctx, mont))
goto err;
/* (Step 4.6) if (z = 1 or z = w-1) */
if (BN_is_one(z) || BN_cmp(z, w1) == 0)
goto outer_loop;
/* (Step 4.7) for j = 1 to a-1 */
for (j = 1; j < a ; ++j) {
/* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */
if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
goto err;
/* (Step 4.7.3) */
if (BN_cmp(z, w1) == 0)
goto outer_loop;
/* (Step 4.7.4) */
if (BN_is_one(z))
goto composite;
}
/* At this point z = b^((w-1)/2) mod w */
//.........这里部分代码省略.........
示例15: ec_GFp_simple_point_get_affine_coordinates
int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
const EC_POINT *point, BIGNUM *x,
BIGNUM *y, BN_CTX *ctx) {
BN_CTX *new_ctx = NULL;
BIGNUM *Z, *Z_1, *Z_2, *Z_3;
const BIGNUM *Z_;
int ret = 0;
if (EC_POINT_is_at_infinity(group, point)) {
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
return 0;
}
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
}
BN_CTX_start(ctx);
Z = BN_CTX_get(ctx);
Z_1 = BN_CTX_get(ctx);
Z_2 = BN_CTX_get(ctx);
Z_3 = BN_CTX_get(ctx);
if (Z == NULL || Z_1 == NULL || Z_2 == NULL || Z_3 == NULL) {
goto err;
}
/* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
if (group->meth->field_decode) {
if (!group->meth->field_decode(group, Z, &point->Z, ctx)) {
goto err;
}
Z_ = Z;
} else {
Z_ = &point->Z;
}
if (BN_is_one(Z_)) {
if (group->meth->field_decode) {
if (x != NULL && !group->meth->field_decode(group, x, &point->X, ctx)) {
goto err;
}
if (y != NULL && !group->meth->field_decode(group, y, &point->Y, ctx)) {
goto err;
}
} else {
if (x != NULL && !BN_copy(x, &point->X)) {
goto err;
}
if (y != NULL && !BN_copy(y, &point->Y)) {
goto err;
}
}
} else {
if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) {
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
goto err;
}
if (group->meth->field_encode == 0) {
/* field_sqr works on standard representation */
if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) {
goto err;
}
} else if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) {
goto err;
}
/* in the Montgomery case, field_mul will cancel out Montgomery factor in
* X: */
if (x != NULL && !group->meth->field_mul(group, x, &point->X, Z_2, ctx)) {
goto err;
}
if (y != NULL) {
if (group->meth->field_encode == 0) {
/* field_mul works on standard representation */
if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) {
goto err;
}
} else if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) {
goto err;
}
/* in the Montgomery case, field_mul will cancel out Montgomery factor in
* Y: */
if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) {
goto err;
}
}
}
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
//.........这里部分代码省略.........