本文整理汇总了C++中BN_mod_exp_mont函数的典型用法代码示例。如果您正苦于以下问题:C++ BN_mod_exp_mont函数的具体用法?C++ BN_mod_exp_mont怎么用?C++ BN_mod_exp_mont使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了BN_mod_exp_mont函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: witness
static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
const BIGNUM *a1_odd, int k, BN_CTX *ctx,
BN_MONT_CTX *mont)
{
if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
return -1;
if (BN_is_one(w))
return 0; /* probably prime */
if (BN_cmp(w, a1) == 0)
return 0; /* w == -1 (mod a), 'a' is probably prime */
while (--k) {
if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
return -1;
if (BN_is_one(w))
return 1; /* 'a' is composite, otherwise a previous 'w'
* would have been == -1 (mod 'a') */
if (BN_cmp(w, a1) == 0)
return 0; /* w == -1 (mod a), 'a' is probably prime */
}
/*
* If we get here, 'w' is the (a-1)/2-th power of the original 'w', and
* it is neither -1 nor +1 -- so 'a' cannot be prime
*/
bn_check_top(w);
return 1;
}
示例2: do_mul_exp
void do_mul_exp(BIGNUM *r, BIGNUM *a, BIGNUM *b, BIGNUM *c, BN_CTX *ctx)
{
int i,k;
double tm;
long num;
BN_MONT_CTX m;
memset(&m,0,sizeof(m));
num=BASENUM;
for (i=0; i<NUM_SIZES; i++)
{
BN_rand(a,sizes[i],1,0);
BN_rand(b,sizes[i],1,0);
BN_rand(c,sizes[i],1,1);
BN_mod(a,a,c,ctx);
BN_mod(b,b,c,ctx);
BN_MONT_CTX_set(&m,c,ctx);
Time_F(START);
for (k=0; k<num; k++)
BN_mod_exp_mont(r,a,b,c,ctx,&m);
tm=Time_F(STOP);
printf("mul %4d ^ %4d %% %d -> %8.3fms %5.1f\n",sizes[i],sizes[i],sizes[i],tm*1000.0/num,tm*mul_c[i]/num);
num/=7;
if (num <= 0) num=1;
}
}
示例3: bn_blinding_create_param
static int bn_blinding_create_param(BN_BLINDING *b, BN_CTX *ctx,
const BN_MONT_CTX *mont_ctx) {
int retry_counter = 32;
do {
if (!BN_rand_range(b->A, b->mod)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
return 0;
}
int no_inverse;
if (BN_mod_inverse_ex(b->Ai, &no_inverse, b->A, b->mod, ctx) == NULL) {
/* this should almost never happen for good RSA keys */
if (no_inverse) {
if (retry_counter-- == 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_MANY_ITERATIONS);
return 0;
}
ERR_clear_error();
} else {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
return 0;
}
} else {
break;
}
} while (1);
if (!BN_mod_exp_mont(b->A, b->A, b->e, b->mod, ctx, mont_ctx)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
示例4: dh_bn_mod_exp
static int dh_bn_mod_exp(DH *dh, BIGNUM *r, BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx)
{
if (a->top == 1)
{
BN_ULONG A = a->d[0];
return BN_mod_exp_mont_word(r,A,p,m,ctx,m_ctx);
}
else
return BN_mod_exp_mont(r,a,p,m,ctx,m_ctx);
}
示例5: dh_bn_mod_exp
static int dh_bn_mod_exp(const DH *dh, BIGNUM *r,
const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx)
{
/*
* If a is only one word long and constant time is false, use the faster
* exponenentiation function.
*/
if (a->top == 1 && ((dh->flags & DH_FLAG_NO_EXP_CONSTTIME) != 0)) {
BN_ULONG A = a->d[0];
return BN_mod_exp_mont_word(r, A, p, m, ctx, m_ctx);
} else
return BN_mod_exp_mont(r, a, p, m, ctx, m_ctx);
}
示例6: bn_blinding_create_param
static int bn_blinding_create_param(BN_BLINDING *b, const RSA *rsa, BN_CTX *ctx) {
int retry_counter = 32;
do {
if (!BN_rand_range(b->A, rsa->n)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
return 0;
}
/* `BN_from_montgomery` + `BN_mod_inverse_no_branch` is equivalent to, but
* more efficient than, `BN_mod_inverse_no_branch` + `BN_to_montgomery`. */
if (!BN_from_montgomery(b->Ai, b->A, rsa->mont_n, ctx)) {
return 0;
}
assert(BN_get_flags(b->A, BN_FLG_CONSTTIME));
int no_inverse;
if (BN_mod_inverse_no_branch(b->Ai, &no_inverse, b->Ai, rsa->n, ctx) ==
NULL) {
/* this should almost never happen for good RSA keys */
if (no_inverse) {
if (retry_counter-- == 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_MANY_ITERATIONS);
return 0;
}
ERR_clear_error();
} else {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
return 0;
}
} else {
break;
}
} while (1);
if (!BN_mod_exp_mont(b->A, b->A, rsa->e, rsa->n, ctx, rsa->mont_n)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
return 0;
}
if (!BN_to_montgomery(b->A, b->A, rsa->mont_n, ctx)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
示例7: ec_field_inverse_mod_ord
static int ec_field_inverse_mod_ord(const EC_GROUP *group, BIGNUM *r,
const BIGNUM *x, BN_CTX *ctx)
{
BIGNUM *e = NULL;
BN_CTX *new_ctx = NULL;
int ret = 0;
if (group->mont_data == NULL)
return 0;
if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL)
return 0;
BN_CTX_start(ctx);
if ((e = BN_CTX_get(ctx)) == NULL)
goto err;
/*-
* We want inverse in constant time, therefore we utilize the fact
* order must be prime and use Fermats Little Theorem instead.
*/
if (!BN_set_word(e, 2))
goto err;
if (!BN_sub(e, group->order, e))
goto err;
/*-
* Exponent e is public.
* No need for scatter-gather or BN_FLG_CONSTTIME.
*/
if (!BN_mod_exp_mont(r, x, e, group->order, ctx, group->mont_data))
goto err;
ret = 1;
err:
if (ctx != NULL)
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
示例8: BN_enhanced_miller_rabin_primality_test
int BN_enhanced_miller_rabin_primality_test(
enum bn_primality_result_t *out_result, const BIGNUM *w, int iterations,
BN_CTX *ctx, BN_GENCB *cb) {
/* Enhanced Miller-Rabin is only valid on odd integers greater than 3. */
if (!BN_is_odd(w) || BN_cmp_word(w, 3) <= 0) {
OPENSSL_PUT_ERROR(BN, BN_R_INVALID_INPUT);
return 0;
}
if (iterations == BN_prime_checks) {
iterations = BN_prime_checks_for_size(BN_num_bits(w));
}
int ret = 0;
BN_MONT_CTX *mont = NULL;
BN_CTX_start(ctx);
BIGNUM *w1 = BN_CTX_get(ctx);
if (w1 == NULL ||
!BN_copy(w1, w) ||
!BN_sub_word(w1, 1)) {
goto err;
}
/* Write w1 as m*2^a (Steps 1 and 2). */
int a = 0;
while (!BN_is_bit_set(w1, a)) {
a++;
}
BIGNUM *m = BN_CTX_get(ctx);
if (m == NULL ||
!BN_rshift(m, w1, a)) {
goto err;
}
BIGNUM *b = BN_CTX_get(ctx);
BIGNUM *g = BN_CTX_get(ctx);
BIGNUM *z = BN_CTX_get(ctx);
BIGNUM *x = BN_CTX_get(ctx);
BIGNUM *x1 = BN_CTX_get(ctx);
if (b == NULL ||
g == NULL ||
z == NULL ||
x == NULL ||
x1 == NULL) {
goto err;
}
/* Montgomery setup for computations mod A */
mont = BN_MONT_CTX_new();
if (mont == NULL ||
!BN_MONT_CTX_set(mont, w, ctx)) {
goto err;
}
/* The following loop performs in inner iteration of the Enhanced Miller-Rabin
* Primality test (Step 4). */
for (int i = 1; i <= iterations; i++) {
/* Step 4.1-4.2 */
if (!BN_rand_range_ex(b, 2, w1)) {
goto err;
}
/* Step 4.3-4.4 */
if (!BN_gcd(g, b, w, ctx)) {
goto err;
}
if (BN_cmp_word(g, 1) > 0) {
*out_result = bn_composite;
ret = 1;
goto err;
}
/* Step 4.5 */
if (!BN_mod_exp_mont(z, b, m, w, ctx, mont)) {
goto err;
}
/* Step 4.6 */
if (BN_is_one(z) || BN_cmp(z, w1) == 0) {
goto loop;
}
/* Step 4.7 */
for (int j = 1; j < a; j++) {
if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) {
goto err;
}
if (BN_cmp(z, w1) == 0) {
goto loop;
}
if (BN_is_one(z)) {
goto composite;
}
}
/* Step 4.8-4.9 */
if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) {
goto err;
//.........这里部分代码省略.........
示例9: test_exp_mod_zero
/*
* test_exp_mod_zero tests that x**0 mod 1 == 0. It returns zero on success.
*/
static int test_exp_mod_zero()
{
BIGNUM *a = NULL, *p = NULL, *m = NULL;
BIGNUM *r = NULL;
BN_ULONG one_word = 1;
BN_CTX *ctx = BN_CTX_new();
int ret = 1, failed = 0;
m = BN_new();
if (!m)
goto err;
BN_one(m);
a = BN_new();
if (!a)
goto err;
BN_one(a);
p = BN_new();
if (!p)
goto err;
BN_zero(p);
r = BN_new();
if (!r)
goto err;
if (!BN_rand(a, 1024, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY))
goto err;
if (!BN_mod_exp(r, a, p, m, ctx))
goto err;
if (!a_is_zero_mod_one("BN_mod_exp", r, a))
failed = 1;
if (!BN_mod_exp_recp(r, a, p, m, ctx))
goto err;
if (!a_is_zero_mod_one("BN_mod_exp_recp", r, a))
failed = 1;
if (!BN_mod_exp_simple(r, a, p, m, ctx))
goto err;
if (!a_is_zero_mod_one("BN_mod_exp_simple", r, a))
failed = 1;
if (!BN_mod_exp_mont(r, a, p, m, ctx, NULL))
goto err;
if (!a_is_zero_mod_one("BN_mod_exp_mont", r, a))
failed = 1;
if (!BN_mod_exp_mont_consttime(r, a, p, m, ctx, NULL)) {
goto err;
}
if (!a_is_zero_mod_one("BN_mod_exp_mont_consttime", r, a))
failed = 1;
/*
* A different codepath exists for single word multiplication
* in non-constant-time only.
*/
if (!BN_mod_exp_mont_word(r, one_word, p, m, ctx, NULL))
goto err;
if (!BN_is_zero(r)) {
fprintf(stderr, "BN_mod_exp_mont_word failed:\n");
fprintf(stderr, "1 ** 0 mod 1 = r (should be 0)\n");
fprintf(stderr, "r = ");
BN_print_fp(stderr, r);
fprintf(stderr, "\n");
return 0;
}
ret = failed;
err:
BN_free(r);
BN_free(a);
BN_free(p);
BN_free(m);
BN_CTX_free(ctx);
return ret;
}
示例10: rsa_ossl_mod_exp
static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
{
BIGNUM *r1, *m1, *vrfy, *r2, *m[RSA_MAX_PRIME_NUM - 2];
int ret = 0, i, ex_primes = 0, smooth = 0;
RSA_PRIME_INFO *pinfo;
BN_CTX_start(ctx);
r1 = BN_CTX_get(ctx);
r2 = BN_CTX_get(ctx);
m1 = BN_CTX_get(ctx);
vrfy = BN_CTX_get(ctx);
if (vrfy == NULL)
goto err;
if (rsa->version == RSA_ASN1_VERSION_MULTI
&& ((ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos)) <= 0
|| ex_primes > RSA_MAX_PRIME_NUM - 2))
goto err;
if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) {
BIGNUM *factor = BN_new();
if (factor == NULL)
goto err;
/*
* Make sure BN_mod_inverse in Montgomery initialization uses the
* BN_FLG_CONSTTIME flag
*/
if (!(BN_with_flags(factor, rsa->p, BN_FLG_CONSTTIME),
BN_MONT_CTX_set_locked(&rsa->_method_mod_p, rsa->lock,
factor, ctx))
|| !(BN_with_flags(factor, rsa->q, BN_FLG_CONSTTIME),
BN_MONT_CTX_set_locked(&rsa->_method_mod_q, rsa->lock,
factor, ctx))) {
BN_free(factor);
goto err;
}
for (i = 0; i < ex_primes; i++) {
pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i);
BN_with_flags(factor, pinfo->r, BN_FLG_CONSTTIME);
if (!BN_MONT_CTX_set_locked(&pinfo->m, rsa->lock, factor, ctx)) {
BN_free(factor);
goto err;
}
}
/*
* We MUST free |factor| before any further use of the prime factors
*/
BN_free(factor);
smooth = (ex_primes == 0)
&& (rsa->meth->bn_mod_exp == BN_mod_exp_mont)
&& (BN_num_bits(rsa->q) == BN_num_bits(rsa->p));
}
if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock,
rsa->n, ctx))
goto err;
if (smooth) {
/*
* Conversion from Montgomery domain, a.k.a. Montgomery reduction,
* accepts values in [0-m*2^w) range. w is m's bit width rounded up
* to limb width. So that at the very least if |I| is fully reduced,
* i.e. less than p*q, we can count on from-to round to perform
* below modulo operations on |I|. Unlike BN_mod it's constant time.
*/
if (/* m1 = I moq q */
!bn_from_mont_fixed_top(m1, I, rsa->_method_mod_q, ctx)
|| !bn_to_mont_fixed_top(m1, m1, rsa->_method_mod_q, ctx)
/* m1 = m1^dmq1 mod q */
|| !BN_mod_exp_mont_consttime(m1, m1, rsa->dmq1, rsa->q, ctx,
rsa->_method_mod_q)
/* r1 = I mod p */
|| !bn_from_mont_fixed_top(r1, I, rsa->_method_mod_p, ctx)
|| !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx)
/* r1 = r1^dmp1 mod p */
|| !BN_mod_exp_mont_consttime(r1, r1, rsa->dmp1, rsa->p, ctx,
rsa->_method_mod_p)
/* r1 = (r1 - m1) mod p */
/*
* bn_mod_sub_fixed_top is not regular modular subtraction,
* it can tolerate subtrahend to be larger than modulus, but
* not bit-wise wider. This makes up for uncommon q>p case,
* when |m1| can be larger than |rsa->p|.
*/
|| !bn_mod_sub_fixed_top(r1, r1, m1, rsa->p)
/* r1 = r1 * iqmp mod p */
|| !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx)
|| !bn_mul_mont_fixed_top(r1, r1, rsa->iqmp, rsa->_method_mod_p,
ctx)
/* r0 = r1 * q + m1 */
|| !bn_mul_fixed_top(r0, r1, rsa->q, ctx)
|| !bn_mod_add_fixed_top(r0, r0, m1, rsa->n))
goto err;
//.........这里部分代码省略.........
示例11: rsa_default_private_transform
int rsa_default_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in,
size_t len) {
if (rsa->n == NULL || rsa->d == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
return 0;
}
BIGNUM *f, *result;
BN_CTX *ctx = NULL;
unsigned blinding_index = 0;
BN_BLINDING *blinding = NULL;
int ret = 0;
ctx = BN_CTX_new();
if (ctx == NULL) {
goto err;
}
BN_CTX_start(ctx);
f = BN_CTX_get(ctx);
result = BN_CTX_get(ctx);
if (f == NULL || result == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
goto err;
}
if (BN_bin2bn(in, len, f) == NULL) {
goto err;
}
if (BN_ucmp(f, rsa->n) >= 0) {
// Usually the padding functions would catch this.
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
goto err;
}
if (!freeze_private_key(rsa, ctx)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
const int do_blinding = (rsa->flags & RSA_FLAG_NO_BLINDING) == 0;
if (rsa->e == NULL && do_blinding) {
// We cannot do blinding or verification without |e|, and continuing without
// those countermeasures is dangerous. However, the Java/Android RSA API
// requires support for keys where only |d| and |n| (and not |e|) are known.
// The callers that require that bad behavior set |RSA_FLAG_NO_BLINDING|.
OPENSSL_PUT_ERROR(RSA, RSA_R_NO_PUBLIC_EXPONENT);
goto err;
}
if (do_blinding) {
blinding = rsa_blinding_get(rsa, &blinding_index, ctx);
if (blinding == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
if (!BN_BLINDING_convert(f, blinding, rsa->e, rsa->mont_n, ctx)) {
goto err;
}
}
if (rsa->p != NULL && rsa->q != NULL && rsa->e != NULL && rsa->dmp1 != NULL &&
rsa->dmq1 != NULL && rsa->iqmp != NULL) {
if (!mod_exp(result, f, rsa, ctx)) {
goto err;
}
} else if (!BN_mod_exp_mont_consttime(result, f, rsa->d_fixed, rsa->n, ctx,
rsa->mont_n)) {
goto err;
}
// Verify the result to protect against fault attacks as described in the
// 1997 paper "On the Importance of Checking Cryptographic Protocols for
// Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Some
// implementations do this only when the CRT is used, but we do it in all
// cases. Section 6 of the aforementioned paper describes an attack that
// works when the CRT isn't used. That attack is much less likely to succeed
// than the CRT attack, but there have likely been improvements since 1997.
//
// This check is cheap assuming |e| is small; it almost always is.
if (rsa->e != NULL) {
BIGNUM *vrfy = BN_CTX_get(ctx);
if (vrfy == NULL ||
!BN_mod_exp_mont(vrfy, result, rsa->e, rsa->n, ctx, rsa->mont_n) ||
!BN_equal_consttime(vrfy, f)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
}
if (do_blinding &&
!BN_BLINDING_invert(result, blinding, rsa->mont_n, ctx)) {
goto err;
}
// The computation should have left |result| as a maximally-wide number, so
// that it and serializing does not leak information about the magnitude of
//.........这里部分代码省略.........
示例12: dsa_builtin_paramgen
//.........这里部分代码省略.........
for (k=0; k<=n; k++)
{
/* obtain "SEED + offset + k" by incrementing: */
for (i=SHA_DIGEST_LENGTH-1; i >= 0; i--)
{
buf[i]++;
if (buf[i] != 0) break;
}
EVP_Digest(buf,SHA_DIGEST_LENGTH,md,NULL,HASH, NULL);
/* step 8 */
if (!BN_bin2bn(md,SHA_DIGEST_LENGTH,r0))
goto err;
if (!BN_lshift(r0,r0,160*k)) goto err;
if (!BN_add(W,W,r0)) goto err;
}
/* more of step 8 */
if (!BN_mask_bits(W,bits-1)) goto err;
if (!BN_copy(X,W)) goto err;
if (!BN_add(X,X,test)) goto err;
/* step 9 */
if (!BN_lshift1(r0,q)) goto err;
if (!BN_mod(c,X,r0,ctx)) goto err;
if (!BN_sub(r0,c,BN_value_one())) goto err;
if (!BN_sub(p,X,r0)) goto err;
/* step 10 */
if (BN_cmp(p,test) >= 0)
{
/* step 11 */
r = BN_is_prime_fasttest_ex(p, DSS_prime_checks,
ctx, 1, cb);
if (r > 0)
goto end; /* found it */
if (r != 0)
goto err;
}
/* step 13 */
counter++;
/* "offset = offset + n + 1" */
/* step 14 */
if (counter >= 4096) break;
}
}
end:
if(!BN_GENCB_call(cb, 2, 1))
goto err;
/* We now need to generate g */
/* Set r0=(p-1)/q */
if (!BN_sub(test,p,BN_value_one())) goto err;
if (!BN_div(r0,NULL,test,q,ctx)) goto err;
if (!BN_set_word(test,h)) goto err;
if (!BN_MONT_CTX_set(mont,p,ctx)) goto err;
for (;;)
{
/* g=test^r0%p */
if (!BN_mod_exp_mont(g,test,r0,p,ctx,mont)) goto err;
if (!BN_is_one(g)) break;
if (!BN_add(test,test,BN_value_one())) goto err;
h++;
}
if(!BN_GENCB_call(cb, 3, 1))
goto err;
ok=1;
err:
if (ok)
{
if(ret->p) BN_free(ret->p);
if(ret->q) BN_free(ret->q);
if(ret->g) BN_free(ret->g);
ret->p=BN_dup(p);
ret->q=BN_dup(q);
ret->g=BN_dup(g);
if (ret->p == NULL || ret->q == NULL || ret->g == NULL)
{
ok=0;
goto err;
}
if (seed_in != NULL) memcpy(seed_in,seed,20);
if (counter_ret != NULL) *counter_ret=counter;
if (h_ret != NULL) *h_ret=h;
}
if(ctx)
{
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
if (mont != NULL) BN_MONT_CTX_free(mont);
return ok;
}
示例13: dsa_bn_mod_exp
static int dsa_bn_mod_exp(DSA *dsa, BIGNUM *r, BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx)
{
return BN_mod_exp_mont(r, a, p, m, ctx, m_ctx);
}
示例14: dsa_do_verify
static int dsa_do_verify(const unsigned char *dgst, int dgst_len, DSA_SIG *sig,
DSA *dsa)
{
BN_CTX *ctx;
BIGNUM u1,u2,t1;
BN_MONT_CTX *mont=NULL;
int ret = -1;
if (!dsa->p || !dsa->q || !dsa->g)
{
DSAerr(DSA_F_DSA_DO_VERIFY,DSA_R_MISSING_PARAMETERS);
return -1;
}
if (BN_num_bits(dsa->q) != 160)
{
DSAerr(DSA_F_DSA_DO_VERIFY,DSA_R_BAD_Q_VALUE);
return -1;
}
if (BN_num_bits(dsa->p) > OPENSSL_DSA_MAX_MODULUS_BITS)
{
DSAerr(DSA_F_DSA_DO_VERIFY,DSA_R_MODULUS_TOO_LARGE);
return -1;
}
BN_init(&u1);
BN_init(&u2);
BN_init(&t1);
if ((ctx=BN_CTX_new()) == NULL) goto err;
if (BN_is_zero(sig->r) || sig->r->neg || BN_ucmp(sig->r, dsa->q) >= 0)
{
ret = 0;
goto err;
}
if (BN_is_zero(sig->s) || sig->s->neg || BN_ucmp(sig->s, dsa->q) >= 0)
{
ret = 0;
goto err;
}
/* Calculate W = inv(S) mod Q
* save W in u2 */
if ((BN_mod_inverse(&u2,sig->s,dsa->q,ctx)) == NULL) goto err;
/* save M in u1 */
if (BN_bin2bn(dgst,dgst_len,&u1) == NULL) goto err;
/* u1 = M * w mod q */
if (!BN_mod_mul(&u1,&u1,&u2,dsa->q,ctx)) goto err;
/* u2 = r * w mod q */
if (!BN_mod_mul(&u2,sig->r,&u2,dsa->q,ctx)) goto err;
if (dsa->flags & DSA_FLAG_CACHE_MONT_P)
{
mont = BN_MONT_CTX_set_locked(
(BN_MONT_CTX **)&dsa->method_mont_p,
CRYPTO_LOCK_DSA, dsa->p, ctx);
if (!mont)
goto err;
}
#if 0
{
BIGNUM t2;
BN_init(&t2);
/* v = ( g^u1 * y^u2 mod p ) mod q */
/* let t1 = g ^ u1 mod p */
if (!BN_mod_exp_mont(&t1,dsa->g,&u1,dsa->p,ctx,mont)) goto err;
/* let t2 = y ^ u2 mod p */
if (!BN_mod_exp_mont(&t2,dsa->pub_key,&u2,dsa->p,ctx,mont)) goto err;
/* let u1 = t1 * t2 mod p */
if (!BN_mod_mul(&u1,&t1,&t2,dsa->p,ctx)) goto err_bn;
BN_free(&t2);
}
/* let u1 = u1 mod q */
if (!BN_mod(&u1,&u1,dsa->q,ctx)) goto err;
#else
{
if (!dsa->meth->dsa_mod_exp(dsa, &t1,dsa->g,&u1,dsa->pub_key,&u2,
dsa->p,ctx,mont)) goto err;
/* BN_copy(&u1,&t1); */
/* let u1 = u1 mod q */
if (!BN_mod(&u1,&t1,dsa->q,ctx)) goto err;
}
#endif
/* V is now in u1. If the signature is correct, it will be
* equal to R. */
ret=(BN_ucmp(&u1, sig->r) == 0);
err:
if (ret != 1) DSAerr(DSA_F_DSA_DO_VERIFY,ERR_R_BN_LIB);
if (ctx != NULL) BN_CTX_free(ctx);
BN_free(&u1);
BN_free(&u2);
BN_free(&t1);
//.........这里部分代码省略.........
示例15: BN_BLINDING_new
BN_BLINDING *BN_BLINDING_create_param(
BN_BLINDING *b, const BIGNUM *e, BIGNUM *m, BN_CTX *ctx,
const BN_MONT_CTX *mont) {
int retry_counter = 32;
BN_BLINDING *ret = NULL;
if (b == NULL) {
ret = BN_BLINDING_new(NULL, NULL, m);
} else {
ret = b;
}
if (ret == NULL) {
goto err;
}
if (ret->A == NULL && (ret->A = BN_new()) == NULL) {
goto err;
}
if (ret->Ai == NULL && (ret->Ai = BN_new()) == NULL) {
goto err;
}
if (e != NULL) {
BN_free(ret->e);
ret->e = BN_dup(e);
}
if (ret->e == NULL) {
goto err;
}
if (mont != NULL) {
ret->mont = mont;
}
do {
if (!BN_rand_range(ret->A, ret->mod)) {
goto err;
}
int no_inverse;
if (BN_mod_inverse_ex(ret->Ai, &no_inverse, ret->A, ret->mod, ctx) == NULL) {
/* this should almost never happen for good RSA keys */
if (no_inverse) {
if (retry_counter-- == 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_MANY_ITERATIONS);
goto err;
}
ERR_clear_error();
} else {
goto err;
}
} else {
break;
}
} while (1);
if (!BN_mod_exp_mont(ret->A, ret->A, ret->e, ret->mod, ctx, ret->mont)) {
goto err;
}
return ret;
err:
if (b == NULL) {
BN_BLINDING_free(ret);
ret = NULL;
}
return ret;
}