本文整理汇总了C++中BN_is_one函数的典型用法代码示例。如果您正苦于以下问题:C++ BN_is_one函数的具体用法?C++ BN_is_one怎么用?C++ BN_is_one使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了BN_is_one函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: pr_fact
/*
* pr_fact - print the factors of a number
*
* Print the factors of the number, from the lowest to the highest.
* A factor will be printed multiple times if it divides the value
* multiple times.
*
* Factors are printed with leading tabs.
*/
static void
pr_fact(BIGNUM *val)
{
const ubig *fact; /* The factor found. */
/* Firewall - catch 0 and 1. */
if (BN_is_zero(val)) /* Historical practice; 0 just exits. */
exit(0);
if (BN_is_one(val)) {
printf("1: 1\n");
return;
}
/* Factor value. */
if (hflag) {
fputs("0x", stdout);
BN_print_fp(stdout, val);
} else
BN_print_dec_fp(stdout, val);
putchar(':');
for (fact = &prime[0]; !BN_is_one(val); ++fact) {
/* Look for the smallest factor. */
do {
if (BN_mod_word(val, (BN_ULONG)*fact) == 0)
break;
} while (++fact <= pr_limit);
/* Watch for primes larger than the table. */
if (fact > pr_limit) {
#ifdef HAVE_OPENSSL
BIGNUM *bnfact;
bnfact = BN_new();
BN_set_word(bnfact, *(fact - 1));
if (!BN_sqr(bnfact, bnfact, ctx))
errx(1, "error in BN_sqr()");
if (BN_cmp(bnfact, val) > 0 ||
BN_is_prime(val, PRIME_CHECKS,
NULL, NULL, NULL) == 1)
pr_print(val);
else
pollard_pminus1(val);
#else
pr_print(val);
#endif
break;
}
/* Divide factor out until none are left. */
do {
printf(hflag ? " 0x%lx" : " %lu", *fact);
BN_div_word(val, (BN_ULONG)*fact);
} while (BN_mod_word(val, (BN_ULONG)*fact) == 0);
/* Let the user know we're doing something. */
fflush(stdout);
}
putchar('\n');
}
示例2: selfTestGeneralOps1
CHECK_RETVAL_BOOL \
static BOOLEAN selfTestGeneralOps1( void )
{
BIGNUM a;
/* Simple tests that don't need the support of higher-level routines
like importBignum() */
BN_init( &a );
if( !BN_zero( &a ) )
return( FALSE );
if( !BN_is_zero( &a ) || BN_is_one( &a ) )
return( FALSE );
if( !BN_is_word( &a, 0 ) || BN_is_word( &a, 1 ) )
return( FALSE );
if( BN_is_odd( &a ) )
return( FALSE );
if( BN_get_word( &a ) != 0 )
return( FALSE );
if( !BN_one( &a ) )
return( FALSE );
if( BN_is_zero( &a ) || !BN_is_one( &a ) )
return( FALSE );
if( BN_is_word( &a, 0 ) || !BN_is_word( &a, 1 ) )
return( FALSE );
if( !BN_is_odd( &a ) )
return( FALSE );
if( BN_num_bytes( &a ) != 1 )
return( FALSE );
if( BN_get_word( &a ) != 1 )
return( FALSE );
BN_clear( &a );
return( TRUE );
}
示例3: witness
static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
const BIGNUM *a1_odd, int k, BN_CTX *ctx,
BN_MONT_CTX *mont)
{
if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
return -1;
if (BN_is_one(w))
return 0; /* probably prime */
if (BN_cmp(w, a1) == 0)
return 0; /* w == -1 (mod a), 'a' is probably prime */
while (--k) {
if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
return -1;
if (BN_is_one(w))
return 1; /* 'a' is composite, otherwise a previous 'w'
* would have been == -1 (mod 'a') */
if (BN_cmp(w, a1) == 0)
return 0; /* w == -1 (mod a), 'a' is probably prime */
}
/*
* If we get here, 'w' is the (a-1)/2-th power of the original 'w', and
* it is neither -1 nor +1 -- so 'a' cannot be prime
*/
bn_check_top(w);
return 1;
}
示例4: test_lehmer_thm
void test_lehmer_thm(void)
{
BIGNUM
*v = BN_new(),
*v2 = BN_new(),
*h = BN_new(),
*n = BN_new(),
*p = BN_new(),
*q = BN_new(),
*g = BN_new();
BN_CTX *ctx = BN_CTX_new();
BN_dec2bn(&v, "2");
BN_dec2bn(&p,
"181857351165158586099319592412492032999818333818932850952491024"
"131283899677766672100915923041329384157985577418702469610834914"
"6296393743554494871840505599");
BN_dec2bn(&q,
"220481921324130321200060036818685031159071785249502660004347524"
"831733577485433929892260897846567483448177204481081755191897197"
"38283711758138566145322943999");
BN_mul(n, p, q, ctx);
/* p + 1 */
BN_dec2bn(&h,
"181857351165158586099319592412492032999818333818932850952491024"
"131283899677766672100915923041329384157985577418702469610834914"
"6296393743554494871840505600");
lucas(v, h, n, ctx);
BN_sub(v2, v, BN_value_two());
BN_gcd(g, v2, n, ctx);
assert(!BN_is_one(g));
/* another test */
BN_dec2bn(&v, "3");
BN_dec2bn(&p,
"181857351165158586099319592412492032999818333818932850952491024"
"131283899677766672100915923041329384157985577418702469610834914"
"62963937435544948718405055999");
BN_generate_prime(q, 512, 1, NULL, NULL, NULL, NULL);
BN_mul(n, p, q, ctx);
BN_sub(h, p, BN_value_one());
BN_mul(h, h, BN_value_two(), ctx);
lucas(v, h, n, ctx);
BN_mod_sub(v2, v, BN_value_two(), n, ctx);
BN_gcd(g, v2, n, ctx);
assert(!BN_is_one(g));
assert(BN_cmp(g, n));
BN_free(q);
BN_free(p);
BN_free(v);
BN_free(v2);
BN_free(h);
BN_CTX_free(ctx);
}
示例5: pr_fact
/*
* pr_fact - print the factors of a number
*
* If the number is 0 or 1, then print the number and return.
* If the number is < 0, print -1, negate the number and continue
* processing.
*
* Print the factors of the number, from the lowest to the highest.
* A factor will be printed numtiple times if it divides the value
* multiple times.
*
* Factors are printed with leading tabs.
*/
static void
pr_fact(BIGNUM *val)
{
const ubig *fact; /* The factor found. */
/* Firewall - catch 0 and 1. */
if (BN_is_zero(val) || BN_is_one(val))
errx(1, "numbers <= 1 aren't permitted.");
/* Factor value. */
BN_print_dec_fp(stdout, val);
putchar(':');
for (fact = &prime[0]; !BN_is_one(val); ++fact) {
/* Look for the smallest factor. */
while (fact <= pr_limit) {
if (BN_mod_word(val, (BN_ULONG)*fact) == 0)
break;
fact++;
}
/* Watch for primes larger than the table. */
if (fact > pr_limit) {
#ifdef HAVE_OPENSSL
BIGNUM *bnfact;
bnfact = BN_new();
BN_set_word(bnfact, (BN_ULONG)*(fact - 1));
BN_sqr(bnfact, bnfact, ctx);
if (BN_cmp(bnfact, val) > 0
|| BN_is_prime(val, PRIME_CHECKS, NULL, NULL,
NULL) == 1) {
putchar(' ');
BN_print_dec_fp(stdout, val);
} else
pollard_rho(val);
#else
printf(" %s", BN_bn2dec(val));
#endif
break;
}
/* Divide factor out until none are left. */
do {
printf(" %lu", *fact);
BN_div_word(val, (BN_ULONG)*fact);
} while (BN_mod_word(val, (BN_ULONG)*fact) == 0);
/* Let the user know we're doing something. */
fflush(stdout);
}
putchar('\n');
}
示例6: pollard_pminus1
/* pollard p-1, algorithm from Jim Gillogly, May 2000 */
static void
pollard_pminus1(BIGNUM *val)
{
BIGNUM *base, *rbase, *num, *i, *x;
base = BN_new();
rbase = BN_new();
num = BN_new();
i = BN_new();
x = BN_new();
BN_set_word(rbase, 1);
newbase:
if (!BN_add_word(rbase, 1))
errx(1, "error in BN_add_word()");
BN_set_word(i, 2);
BN_copy(base, rbase);
for (;;) {
BN_mod_exp(base, base, i, val, ctx);
if (BN_is_one(base))
goto newbase;
BN_copy(x, base);
BN_sub_word(x, 1);
if (!BN_gcd(x, x, val, ctx))
errx(1, "error in BN_gcd()");
if (!BN_is_one(x)) {
if (BN_is_prime(x, PRIME_CHECKS, NULL, NULL,
NULL) == 1)
pr_print(x);
else
pollard_pminus1(x);
fflush(stdout);
BN_div(num, NULL, val, x, ctx);
if (BN_is_one(num))
return;
if (BN_is_prime(num, PRIME_CHECKS, NULL, NULL,
NULL) == 1) {
pr_print(num);
fflush(stdout);
return;
}
BN_copy(val, num);
}
if (!BN_add_word(i, 1))
errx(1, "error in BN_add_word()");
}
}
示例7: verifystep1
static int verifystep1(const JPakeUser * us, const JPakeUserPublic * them,
const JPakeParameters * params)
{
printf("\n%s verifies %s:\n\n", us->p.name, them->name);
// verify their ZKP(xc)
if (!VerifyZKP(&us->p.s1c.zkpx, us->p.s1c.gx, them, params->g, params,
them->base, ""))
return 0;
// verify their ZKP(xd)
if (!VerifyZKP(&us->p.s1d.zkpx, us->p.s1d.gx, them, params->g, params,
them->base + 1, ""))
return 0;
// g^xd != 1
printf(" g^{x%d} != 1: ", them->base + 1);
if (BN_is_one(us->p.s1d.gx)) {
puts("FAIL");
return 0;
}
puts("OK");
return 1;
}
示例8: test
/**
* \brief Test for a pair of moduluses having a prime factor in common.
*
*/
int test(BIGNUM *n, BIGNUM *m)
{
BIGNUM *g;
BN_CTX *ctx;
int ret = 0;
if (!BN_cmp(n, m)) return 1;
g = BN_new();
ctx = BN_CTX_new();
BN_gcd(g, n, m, ctx);
if (!BN_is_one(g)) {
fprintf(stdout, "%-8s: ", PRIME);
BN_print_fp(stdout, n);
fprintf(stdout, " ");
BN_print_fp(stdout, m);
fprintf(stdout, "\n");
ret = 1;
}
BN_CTX_free(ctx);
BN_free(g);
return ret;
}
示例9: ec_GFp_simple_set_Jprojective_coordinates_GFp
int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
EC_POINT *point,
const BIGNUM *x,
const BIGNUM *y,
const BIGNUM *z,
BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
int ret = 0;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
if (x != NULL) {
if (!BN_nnmod(&point->X, x, &group->field, ctx))
goto err;
if (group->meth->field_encode) {
if (!group->meth->field_encode(group, &point->X, &point->X, ctx))
goto err;
}
}
if (y != NULL) {
if (!BN_nnmod(&point->Y, y, &group->field, ctx))
goto err;
if (group->meth->field_encode) {
if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx))
goto err;
}
}
if (z != NULL) {
int Z_is_one;
if (!BN_nnmod(&point->Z, z, &group->field, ctx))
goto err;
Z_is_one = BN_is_one(&point->Z);
if (group->meth->field_encode) {
if (Z_is_one && (group->meth->field_set_to_one != 0)) {
if (!group->meth->field_set_to_one(group, &point->Z, ctx))
goto err;
} else {
if (!group->
meth->field_encode(group, &point->Z, &point->Z, ctx))
goto err;
}
}
point->Z_is_one = Z_is_one;
}
ret = 1;
err:
if (new_ctx != NULL)
BN_CTX_free(new_ctx);
return ret;
}
示例10: main
int main(int argc, char ** argv) {
/* Generate 2 big random numbers (512 bits) */
primitive_p = initialize("1011011");
initialize_rand(SEED);
BIGNUM *p = get_long_prime_number(RSA_KEY_LENGTH);
printf("p=%s\n", BN_bn2hex(p));
BIGNUM *q = get_long_prime_number(RSA_KEY_LENGTH);
printf("q=%s\n", BN_bn2hex(q));
/* Compute phi = (p-1)*(q-1) and n = p*q */
BIGNUM *phi, *n;
BN_CTX *tmp;
tmp = BN_CTX_new();
n = BN_new();
phi = BN_new();
BN_copy(n, p);
BN_mul(n, n, q, tmp);
printf("n=%s\n", BN_bn2dec(n));
BN_sub_word(p, 1);
printf("p-1=%s\n", BN_bn2dec(p));
BN_sub_word(q, 1);
printf("q-1=%s\n", BN_bn2dec(q));
phi = BN_new();
BN_init(tmp);
BN_mul(phi, p, q, tmp);
printf("(p-1)(q-1)=%s\n", BN_bn2dec(phi));
/* Find the smallest integer coprime with phi */
BIGNUM * e = BN_new();
BIGNUM *gcd = BN_new();
BN_add_word(e, 3);
for ( ; ; BN_add_word(e, 2)) {
tmp = BN_CTX_new();
BN_gcd(gcd, e, phi, tmp);
if (BN_is_one(gcd))
break;
}
printf("e=%s\n", BN_bn2dec(e));
/* Find d, the inverse of e in Z_phi */
BIGNUM * d = BN_new();
BIGNUM * i = BN_new();
BIGNUM * rem = BN_new();
BIGNUM * prod = BN_new();
BN_add_word(i, 1);
for ( ; ; BN_add_word(i, 1)) {
BN_copy(prod, phi);
tmp = BN_CTX_new();
BN_mul(prod, prod, i, tmp);
BN_add_word(prod, 1);
BN_div(d, rem, prod, e, tmp);
if (BN_is_zero(rem)) {
break;
}
}
printf("d=%s\n", BN_bn2dec(d));
return 0;
}
示例11: dss_paramcheck
static int dss_paramcheck(int nmod, BIGNUM *p, BIGNUM *q, BIGNUM *g,
BN_CTX *ctx)
{
BIGNUM *rem = NULL;
if (BN_num_bits(p) != nmod)
return 0;
if (BN_num_bits(q) != 160)
return 0;
if (BN_is_prime_ex(p, BN_prime_checks, ctx, NULL) != 1)
return 0;
if (BN_is_prime_ex(q, BN_prime_checks, ctx, NULL) != 1)
return 0;
rem = BN_new();
if (!BN_mod(rem, p, q, ctx) || !BN_is_one(rem)
|| (BN_cmp(g, BN_value_one()) <= 0)
|| !BN_mod_exp(rem, g, q, p, ctx) || !BN_is_one(rem)) {
BN_free(rem);
return 0;
}
/* Todo: check g */
BN_free(rem);
return 1;
}
示例12: DH_check_pub_key
int DH_check_pub_key(const DH *dh, const BIGNUM *pub_key, int *ret) {
*ret = 0;
BN_CTX *ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
BN_CTX_start(ctx);
int ok = 0;
/* Check |pub_key| is greater than 1. */
BIGNUM *tmp = BN_CTX_get(ctx);
if (tmp == NULL ||
!BN_set_word(tmp, 1)) {
goto err;
}
if (BN_cmp(pub_key, tmp) <= 0) {
*ret |= DH_CHECK_PUBKEY_TOO_SMALL;
}
/* Check |pub_key| is less than |dh->p| - 1. */
if (!BN_copy(tmp, dh->p) ||
!BN_sub_word(tmp, 1)) {
goto err;
}
if (BN_cmp(pub_key, tmp) >= 0) {
*ret |= DH_CHECK_PUBKEY_TOO_LARGE;
}
if (dh->q != NULL) {
/* Check |pub_key|^|dh->q| is 1 mod |dh->p|. This is necessary for RFC 5114
* groups which are not safe primes but pick a generator on a prime-order
* subgroup of size |dh->q|. */
if (!BN_mod_exp(tmp, pub_key, dh->q, dh->p, ctx)) {
goto err;
}
if (!BN_is_one(tmp)) {
*ret |= DH_CHECK_PUBKEY_INVALID;
}
}
ok = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(ctx);
return ok;
}
示例13: bsqrt_stop
static bool
bsqrt_stop(const BIGNUM *x, const BIGNUM *y, u_int *onecount)
{
BIGNUM *r;
bool ret;
r = BN_new();
bn_checkp(r);
bn_check(BN_sub(r, x, y));
if (BN_is_one(r))
(*onecount)++;
ret = BN_is_zero(r);
BN_free(r);
return (ret || *onecount > 1);
}
示例14: is_legal
/* g^x is a legal value */
static int is_legal(const BIGNUM *gx, const JPAKE_CTX *ctx)
{
BIGNUM *t;
int res;
if(BN_is_negative(gx) || BN_is_zero(gx) || BN_cmp(gx, ctx->p.p) >= 0)
return 0;
t = BN_new();
BN_mod_exp(t, gx, ctx->p.q, ctx->p.p, ctx->ctx);
res = BN_is_one(t);
BN_free(t);
return res;
}
示例15: check_mod_inverse
static int check_mod_inverse(int *out_ok, const BIGNUM *a, const BIGNUM *ainv,
const BIGNUM *m, int check_reduced, BN_CTX *ctx) {
BN_CTX_start(ctx);
BIGNUM *tmp = BN_CTX_get(ctx);
int ret = tmp != NULL &&
bn_mul_consttime(tmp, a, ainv, ctx) &&
bn_div_consttime(NULL, tmp, tmp, m, ctx);
if (ret) {
*out_ok = BN_is_one(tmp);
if (check_reduced && (BN_is_negative(ainv) || BN_cmp(ainv, m) >= 0)) {
*out_ok = 0;
}
}
BN_CTX_end(ctx);
return ret;
}