本文整理汇总了C++中BN_free函数的典型用法代码示例。如果您正苦于以下问题:C++ BN_free函数的具体用法?C++ BN_free怎么用?C++ BN_free使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了BN_free函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: ZHJPAKE_Message_release
static void ZHJPAKE_Message_release(ZHJPAKE_Message *message)
{
BN_free(message->y);
}
示例2: YAK_ZKP_release
static void YAK_ZKP_release(YAK_ZKP *zkp)
{
BN_free(zkp->b);
BN_free(zkp->gr);
}
示例3: BN_mod_inverse
//.........这里部分代码省略.........
}
/* Now
* A = D*B + M;
* thus we have
* (**) sign*Y*a == D*B + M (mod |n|).
*/
tmp = A; /* keep the BIGNUM object, the value does not matter */
/* (A, B) := (B, A mod B) ... */
A = B;
B = M;
/* ... so we have 0 <= B < A again */
/* Since the former M is now B and the former B is now A,
* (**) translates into
* sign*Y*a == D*A + B (mod |n|),
* i.e.
* sign*Y*a - D*A == B (mod |n|).
* Similarly, (*) translates into
* -sign*X*a == A (mod |n|).
*
* Thus,
* sign*Y*a + D*sign*X*a == B (mod |n|),
* i.e.
* sign*(Y + D*X)*a == B (mod |n|).
*
* So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
* -sign*X*a == B (mod |n|),
* sign*Y*a == A (mod |n|).
* Note that X and Y stay non-negative all the time.
*/
/* most of the time D is very small, so we can optimize tmp := D*X+Y */
if (BN_is_one(D)) {
if (!BN_add(tmp, X, Y))
goto err;
} else {
if (BN_is_word(D, 2)) {
if (!BN_lshift1(tmp, X))
goto err;
} else if (BN_is_word(D, 4)) {
if (!BN_lshift(tmp, X, 2))
goto err;
} else if (D->top == 1) {
if (!BN_copy(tmp, X))
goto err;
if (!BN_mul_word(tmp, D->d[0]))
goto err;
} else {
if (!BN_mul(tmp, D,X, ctx))
goto err;
}
if (!BN_add(tmp, tmp, Y))
goto err;
}
M = Y; /* keep the BIGNUM object, the value does not matter */
Y = X;
X = tmp;
sign = -sign;
}
}
/*
* The while loop (Euclid's algorithm) ends when
* A == gcd(a,n);
* we have
* sign*Y*a == A (mod |n|),
* where Y is non-negative.
*/
if (sign < 0) {
if (!BN_sub(Y, n, Y))
goto err;
}
/* Now Y*a == A (mod |n|). */
if (BN_is_one(A)) {
/* Y*a == 1 (mod |n|) */
if (!Y->neg && BN_ucmp(Y, n) < 0) {
if (!BN_copy(R, Y))
goto err;
} else {
if (!BN_nnmod(R, Y,n, ctx))
goto err;
}
} else {
BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
goto err;
}
ret = R;
err:
if ((ret == NULL) && (in == NULL))
BN_free(R);
BN_CTX_end(ctx);
bn_check_top(ret);
return (ret);
}
示例4: int
BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b,
const BIGNUM *e, /* const */ BIGNUM *m, BN_CTX *ctx,
int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx),
BN_MONT_CTX *m_ctx)
{
int retry_counter = 32;
BN_BLINDING *ret = NULL;
if (b == NULL)
ret = BN_BLINDING_new(NULL, NULL, m);
else
ret = b;
if (ret == NULL)
goto err;
if (ret->A == NULL && (ret->A = BN_new()) == NULL)
goto err;
if (ret->Ai == NULL && (ret->Ai = BN_new()) == NULL)
goto err;
if (e != NULL)
{
if (ret->e != NULL)
BN_free(ret->e);
ret->e = BN_dup(e);
}
if (ret->e == NULL)
goto err;
if (bn_mod_exp != NULL)
ret->bn_mod_exp = bn_mod_exp;
if (m_ctx != NULL)
ret->m_ctx = m_ctx;
do {
if (!BN_rand_range(ret->A, ret->mod)) goto err;
if (BN_mod_inverse(ret->Ai, ret->A, ret->mod, ctx) == NULL)
{
/* this should almost never happen for good RSA keys */
unsigned long error = ERR_peek_last_error();
if (ERR_GET_REASON(error) == BN_R_NO_INVERSE)
{
if (retry_counter-- == 0)
{
BNerr(BN_F_BN_BLINDING_CREATE_PARAM,
BN_R_TOO_MANY_ITERATIONS);
goto err;
}
ERR_clear_error();
}
else
goto err;
}
else
break;
} while (1);
if (ret->bn_mod_exp != NULL && ret->m_ctx != NULL)
{
if (!ret->bn_mod_exp(ret->A, ret->A, ret->e, ret->mod, ctx, ret->m_ctx))
goto err;
}
else
{
if (!BN_mod_exp(ret->A, ret->A, ret->e, ret->mod, ctx))
goto err;
}
return ret;
err:
if (b == NULL && ret != NULL)
{
BN_BLINDING_free(ret);
ret = NULL;
}
return ret;
}
示例5: main
int main()
{
BIGNUM *x, *y, *exp, *m, *order, *cof;
BIGNUM t, store[30];
COMPLEX *a, *b, *r;
EC_POINT *point, *Q;
int i;
x = BN_new();
y = BN_new();
order = BN_new();
exp = BN_new();
m = BN_new();
a = COMP_new();
b = COMP_new();
r = COMP_new();
for( i = 0; i < 30; i++ )
BN_init( &(store[i]) );
if ( Context == NULL )
Context = BN_CTX_new();
bi_init( &malloc );
group = EC_GROUP_new( EC_GFp_simple_method() );
if ( group == NULL )
goto err;
if(!BN_set_word(m, 43l))
goto err;
BN_set_word(x, 1l);
BN_set_word(y, 0l);
if ( !EC_GROUP_set_curve_GFp( group, m, x, y, Context) )
goto err;
BN_set_word(x, 23l);
BN_set_word(y, 8l);
BN_set_word(order, 11l);
point = EC_POINT_new( group );
EC_POINT_set_affine_coordinates_GFp( group, point, x, y, Context );
cof = BN_new();
BN_set_word( cof, 4 );
EC_GROUP_set_generator( group, point, order, cof );
if ( EC_GROUP_check( group, Context ) )
printf(" group set is ok \n");
TSS_DAA_ISSUER_KEY issuer_key;
TSS_DAA_ISSUER_PROOF issuer_proof;
TSS_DAA_JOIN_issuer_setup(&issuer_key, &issuer_proof);
// printf("\n");
// BN_set_word(x, 41l);
// BN_mod_inverse(x, x, m, Context);
// BN_print_fp(stdout, x);
//
// printf("\n");
// BN_set_word(x, 11l);
// BN_mod_inverse(x, x, m, Context);
// BN_print_fp(stdout, x);
char *str = "abcdefghijklmnop";
Q = map_to_point( str );
BN_set_word(x, 23l);
BN_set_word(y, 8l);
BN_set_word(order, 11l);
Q = EC_POINT_new( group );
EC_POINT_set_affine_coordinates_GFp( group, Q, x, y, Context );
Tate( point, Q, order, 0, store, a );
printf("tate pair t(p, Q) =:\n a.x: ");
BN_print_fp(stdout, &a->x);
printf("\na.y: ");
BN_print_fp(stdout, &a->y);
EC_POINT_dbl( group, point, point, Context);
EC_POINT_get_affine_coordinates_GFp( group, point, x, y, Context);
printf("2A.x =:\n");
BN_print_fp(stdout, x);
printf("2P.y= :\n");
BN_print_fp(stdout, y);
Tate( point, Q, order, 0, store, a );
printf("tate pair t(2p, Q) =:\n a.x: ");
BN_print_fp(stdout, &a->x);
printf("\na.y: ");
BN_print_fp(stdout, &a->y);
BN_free( x );
BN_free( y );
BN_free( exp );
BN_free( m );
BN_free( order );
//.........这里部分代码省略.........
示例6: generate_key
static int generate_key(DH *dh)
{
int ok=0;
int generate_new_key=0;
unsigned l;
BN_CTX *ctx;
BN_MONT_CTX *mont=NULL;
BIGNUM *pub_key=NULL,*priv_key=NULL;
ctx = BN_CTX_new();
if (ctx == NULL) goto err;
if (dh->priv_key == NULL)
{
priv_key=BN_new();
if (priv_key == NULL) goto err;
generate_new_key=1;
}
else
priv_key=dh->priv_key;
if (dh->pub_key == NULL)
{
pub_key=BN_new();
if (pub_key == NULL) goto err;
}
else
pub_key=dh->pub_key;
if (dh->flags & DH_FLAG_CACHE_MONT_P)
{
mont = BN_MONT_CTX_set_locked(&dh->method_mont_p,
CRYPTO_LOCK_DH, dh->p, ctx);
if (!mont)
goto err;
}
if (generate_new_key)
{
l = dh->length ? dh->length : BN_num_bits(dh->p)-1; /* secret exponent length */
if (!BN_rand(priv_key, l, 0, 0)) goto err;
}
{
BIGNUM local_prk;
BIGNUM *prk;
if ((dh->flags & DH_FLAG_NO_EXP_CONSTTIME) == 0)
{
BN_init(&local_prk);
prk = &local_prk;
BN_with_flags(prk, priv_key, BN_FLG_CONSTTIME);
}
else
prk = priv_key;
if (!dh->meth->bn_mod_exp(dh, pub_key, dh->g, prk, dh->p, ctx, mont)) goto err;
}
dh->pub_key=pub_key;
dh->priv_key=priv_key;
ok=1;
err:
if (ok != 1)
DHerr(DH_F_GENERATE_KEY,ERR_R_BN_LIB);
if ((pub_key != NULL) && (dh->pub_key == NULL)) BN_free(pub_key);
if ((priv_key != NULL) && (dh->priv_key == NULL)) BN_free(priv_key);
BN_CTX_free(ctx);
return(ok);
}
示例7: BN_new
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
// Compute a square root of |a| mod |p| using the Tonelli/Shanks algorithm
// (cf. Henri Cohen, "A Course in Algebraic Computational Number Theory",
// algorithm 1.5.1). |p| is assumed to be a prime.
BIGNUM *ret = in;
int err = 1;
int r;
BIGNUM *A, *b, *q, *t, *x, *y;
int e, i, j;
if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
if (BN_abs_is_word(p, 2)) {
if (ret == NULL) {
ret = BN_new();
}
if (ret == NULL) {
goto end;
}
if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
if (ret != in) {
BN_free(ret);
}
return NULL;
}
return ret;
}
OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
return (NULL);
}
if (BN_is_zero(a) || BN_is_one(a)) {
if (ret == NULL) {
ret = BN_new();
}
if (ret == NULL) {
goto end;
}
if (!BN_set_word(ret, BN_is_one(a))) {
if (ret != in) {
BN_free(ret);
}
return NULL;
}
return ret;
}
BN_CTX_start(ctx);
A = BN_CTX_get(ctx);
b = BN_CTX_get(ctx);
q = BN_CTX_get(ctx);
t = BN_CTX_get(ctx);
x = BN_CTX_get(ctx);
y = BN_CTX_get(ctx);
if (y == NULL) {
goto end;
}
if (ret == NULL) {
ret = BN_new();
}
if (ret == NULL) {
goto end;
}
// A = a mod p
if (!BN_nnmod(A, a, p, ctx)) {
goto end;
}
// now write |p| - 1 as 2^e*q where q is odd
e = 1;
while (!BN_is_bit_set(p, e)) {
e++;
}
// we'll set q later (if needed)
if (e == 1) {
// The easy case: (|p|-1)/2 is odd, so 2 has an inverse
// modulo (|p|-1)/2, and square roots can be computed
// directly by modular exponentiation.
// We have
// 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
// so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
if (!BN_rshift(q, p, 2)) {
goto end;
}
q->neg = 0;
if (!BN_add_word(q, 1) ||
!BN_mod_exp_mont(ret, A, q, p, ctx, NULL)) {
goto end;
}
err = 0;
goto vrfy;
}
if (e == 2) {
// |p| == 5 (mod 8)
//
//.........这里部分代码省略.........
示例8: PKCS12_key_gen_uni
int
PKCS12_key_gen_uni(unsigned char *pass, int passlen, unsigned char *salt,
int saltlen, int id, int iter, int n, unsigned char *out,
const EVP_MD *md_type)
{
unsigned char *B, *D, *I, *p, *Ai;
int Slen, Plen, Ilen, Ijlen;
int i, j, u, v;
int ret = 0;
BIGNUM *Ij, *Bpl1; /* These hold Ij and B + 1 */
EVP_MD_CTX ctx;
EVP_MD_CTX_init(&ctx);
v = EVP_MD_block_size(md_type);
u = EVP_MD_size(md_type);
if (u < 0)
return 0;
D = malloc(v);
Ai = malloc(u);
B = malloc(v + 1);
Slen = v * ((saltlen + v - 1) / v);
if (passlen)
Plen = v * ((passlen + v - 1)/v);
else
Plen = 0;
Ilen = Slen + Plen;
I = malloc(Ilen);
Ij = BN_new();
Bpl1 = BN_new();
if (!D || !Ai || !B || !I || !Ij || !Bpl1)
goto err;
for (i = 0; i < v; i++)
D[i] = id;
p = I;
for (i = 0; i < Slen; i++)
*p++ = salt[i % saltlen];
for (i = 0; i < Plen; i++)
*p++ = pass[i % passlen];
for (;;) {
if (!EVP_DigestInit_ex(&ctx, md_type, NULL) ||
!EVP_DigestUpdate(&ctx, D, v) ||
!EVP_DigestUpdate(&ctx, I, Ilen) ||
!EVP_DigestFinal_ex(&ctx, Ai, NULL))
goto err;
for (j = 1; j < iter; j++) {
if (!EVP_DigestInit_ex(&ctx, md_type, NULL) ||
!EVP_DigestUpdate(&ctx, Ai, u) ||
!EVP_DigestFinal_ex(&ctx, Ai, NULL))
goto err;
}
memcpy (out, Ai, min (n, u));
if (u >= n) {
ret = 1;
goto end;
}
n -= u;
out += u;
for (j = 0; j < v; j++)
B[j] = Ai[j % u];
/* Work out B + 1 first then can use B as tmp space */
if (!BN_bin2bn (B, v, Bpl1))
goto err;
if (!BN_add_word (Bpl1, 1))
goto err;
for (j = 0; j < Ilen; j += v) {
if (!BN_bin2bn(I + j, v, Ij))
goto err;
if (!BN_add(Ij, Ij, Bpl1))
goto err;
if (!BN_bn2bin(Ij, B))
goto err;
Ijlen = BN_num_bytes (Ij);
/* If more than 2^(v*8) - 1 cut off MSB */
if (Ijlen > v) {
if (!BN_bn2bin (Ij, B))
goto err;
memcpy (I + j, B + 1, v);
#ifndef PKCS12_BROKEN_KEYGEN
/* If less than v bytes pad with zeroes */
} else if (Ijlen < v) {
memset(I + j, 0, v - Ijlen);
if (!BN_bn2bin(Ij, I + j + v - Ijlen))
goto err;
#endif
} else if (!BN_bn2bin (Ij, I + j))
goto err;
}
}
err:
PKCS12err(PKCS12_F_PKCS12_KEY_GEN_UNI, ERR_R_MALLOC_FAILURE);
end:
free(Ai);
free(B);
free(D);
free(I);
BN_free(Ij);
BN_free(Bpl1);
EVP_MD_CTX_cleanup(&ctx);
//.........这里部分代码省略.........
示例9: BN_new
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
/* Returns 'ret' such that
* ret^2 == a (mod p),
* using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
* in Algebraic Computational Number Theory", algorithm 1.5.1).
* 'p' must be prime!
*/
{
BIGNUM *ret = in;
int err = 1;
int r;
BIGNUM *A, *b, *q, *t, *x, *y;
int e, i, j;
if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
{
if (BN_abs_is_word(p, 2))
{
if (ret == NULL)
ret = BN_new();
if (ret == NULL)
goto end;
if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
{
BN_free(ret);
return NULL;
}
bn_check_top(ret);
return ret;
}
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
return(NULL);
}
if (BN_is_zero(a) || BN_is_one(a))
{
if (ret == NULL)
ret = BN_new();
if (ret == NULL)
goto end;
if (!BN_set_word(ret, BN_is_one(a)))
{
BN_free(ret);
return NULL;
}
bn_check_top(ret);
return ret;
}
BN_CTX_start(ctx);
A = BN_CTX_get(ctx);
b = BN_CTX_get(ctx);
q = BN_CTX_get(ctx);
t = BN_CTX_get(ctx);
x = BN_CTX_get(ctx);
y = BN_CTX_get(ctx);
if (y == NULL) goto end;
if (ret == NULL)
ret = BN_new();
if (ret == NULL) goto end;
/* A = a mod p */
if (!BN_nnmod(A, a, p, ctx)) goto end;
/* now write |p| - 1 as 2^e*q where q is odd */
e = 1;
while (!BN_is_bit_set(p, e))
e++;
/* we'll set q later (if needed) */
if (e == 1)
{
/* The easy case: (|p|-1)/2 is odd, so 2 has an inverse
* modulo (|p|-1)/2, and square roots can be computed
* directly by modular exponentiation.
* We have
* 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
* so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
*/
if (!BN_rshift(q, p, 2)) goto end;
q->neg = 0;
if (!BN_add_word(q, 1)) goto end;
if (!BN_mod_exp(ret, A, q, p, ctx)) goto end;
err = 0;
goto vrfy;
}
if (e == 2)
{
/* |p| == 5 (mod 8)
*
* In this case 2 is always a non-square since
* Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
* So if a really is a square, then 2*a is a non-square.
* Thus for
* b := (2*a)^((|p|-5)/8),
* i := (2*a)*b^2
* we have
//.........这里部分代码省略.........
示例10: rsa_get_params
/*
* rsa_get_params(): - Get the important parameters of an RSA public key
*/
int rsa_get_params(RSA *key, uint64_t *exponent, uint32_t *n0_invp,
BIGNUM **modulusp, BIGNUM **r_squaredp)
{
BIGNUM *big1, *big2, *big32, *big2_32;
BIGNUM *n, *r, *r_squared, *tmp;
BN_CTX *bn_ctx = BN_CTX_new();
int ret = 0;
/* Initialize BIGNUMs */
big1 = BN_new();
big2 = BN_new();
big32 = BN_new();
r = BN_new();
r_squared = BN_new();
tmp = BN_new();
big2_32 = BN_new();
n = BN_new();
if (!big1 || !big2 || !big32 || !r || !r_squared || !tmp || !big2_32 ||
!n) {
fprintf(stderr, "Out of memory (bignum)\n");
return -ENOMEM;
}
if (0 != rsa_get_exponent(key, exponent))
ret = -1;
if (!BN_copy(n, key->n) || !BN_set_word(big1, 1L) ||
!BN_set_word(big2, 2L) || !BN_set_word(big32, 32L))
ret = -1;
/* big2_32 = 2^32 */
if (!BN_exp(big2_32, big2, big32, bn_ctx))
ret = -1;
/* Calculate n0_inv = -1 / n[0] mod 2^32 */
if (!BN_mod_inverse(tmp, n, big2_32, bn_ctx) ||
!BN_sub(tmp, big2_32, tmp))
ret = -1;
*n0_invp = BN_get_word(tmp);
/* Calculate R = 2^(# of key bits) */
if (!BN_set_word(tmp, BN_num_bits(n)) ||
!BN_exp(r, big2, tmp, bn_ctx))
ret = -1;
/* Calculate r_squared = R^2 mod n */
if (!BN_copy(r_squared, r) ||
!BN_mul(tmp, r_squared, r, bn_ctx) ||
!BN_mod(r_squared, tmp, n, bn_ctx))
ret = -1;
*modulusp = n;
*r_squaredp = r_squared;
BN_free(big1);
BN_free(big2);
BN_free(big32);
BN_free(r);
BN_free(tmp);
BN_free(big2_32);
if (ret) {
fprintf(stderr, "Bignum operations failed\n");
return -ENOMEM;
}
return ret;
}
示例11: rsa_add_verify_data
int rsa_add_verify_data(struct image_sign_info *info, void *keydest)
{
BIGNUM *modulus, *r_squared;
uint64_t exponent;
uint32_t n0_inv;
int parent, node;
char name[100];
int ret;
int bits;
RSA *rsa;
debug("%s: Getting verification data\n", __func__);
ret = rsa_get_pub_key(info->keydir, info->keyname, &rsa);
if (ret)
return ret;
ret = rsa_get_params(rsa, &exponent, &n0_inv, &modulus, &r_squared);
if (ret)
return ret;
bits = BN_num_bits(modulus);
parent = fdt_subnode_offset(keydest, 0, FIT_SIG_NODENAME);
if (parent == -FDT_ERR_NOTFOUND) {
parent = fdt_add_subnode(keydest, 0, FIT_SIG_NODENAME);
if (parent < 0) {
ret = parent;
if (ret != -FDT_ERR_NOSPACE) {
fprintf(stderr, "Couldn't create signature node: %s\n",
fdt_strerror(parent));
}
}
}
if (ret)
goto done;
/* Either create or overwrite the named key node */
snprintf(name, sizeof(name), "key-%s", info->keyname);
node = fdt_subnode_offset(keydest, parent, name);
if (node == -FDT_ERR_NOTFOUND) {
node = fdt_add_subnode(keydest, parent, name);
if (node < 0) {
ret = node;
if (ret != -FDT_ERR_NOSPACE) {
fprintf(stderr, "Could not create key subnode: %s\n",
fdt_strerror(node));
}
}
} else if (node < 0) {
fprintf(stderr, "Cannot select keys parent: %s\n",
fdt_strerror(node));
ret = node;
}
if (!ret) {
ret = fdt_setprop_string(keydest, node, "key-name-hint",
info->keyname);
}
if (!ret)
ret = fdt_setprop_u32(keydest, node, "rsa,num-bits", bits);
if (!ret)
ret = fdt_setprop_u32(keydest, node, "rsa,n0-inverse", n0_inv);
if (!ret) {
ret = fdt_setprop_u64(keydest, node, "rsa,exponent", exponent);
}
if (!ret) {
ret = fdt_add_bignum(keydest, node, "rsa,modulus", modulus,
bits);
}
if (!ret) {
ret = fdt_add_bignum(keydest, node, "rsa,r-squared", r_squared,
bits);
}
if (!ret) {
ret = fdt_setprop_string(keydest, node, FIT_ALGO_PROP,
info->algo->name);
}
if (!ret && info->require_keys) {
ret = fdt_setprop_string(keydest, node, "required",
info->require_keys);
}
done:
BN_free(modulus);
BN_free(r_squared);
if (ret)
return ret == -FDT_ERR_NOSPACE ? -ENOSPC : -EIO;
return 0;
}
示例12: rdssl_rsa_encrypt
void
rdssl_rsa_encrypt(uint8 * out, uint8 * in, int len, uint32 modulus_size, uint8 * modulus,
uint8 * exponent)
{
#if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
BN_CTX *ctx;
BIGNUM *mod, *exp, *x, *y;
uint8 inr[SEC_MAX_MODULUS_SIZE];
int outlen;
reverse(modulus, modulus_size);
reverse(exponent, SEC_EXPONENT_SIZE);
memcpy(inr, in, len);
reverse(inr, len);
ctx = BN_CTX_new();
mod = BN_new();
exp = BN_new();
x = BN_new();
y = BN_new();
BN_bin2bn(modulus, modulus_size, mod);
BN_bin2bn(exponent, SEC_EXPONENT_SIZE, exp);
BN_bin2bn(inr, len, x);
BN_mod_exp(y, x, exp, mod, ctx);
outlen = BN_bn2bin(y, out);
reverse(out, outlen);
if (outlen < (int) modulus_size)
memset(out + outlen, 0, modulus_size - outlen);
BN_free(y);
BN_clear_free(x);
BN_free(exp);
BN_free(mod);
BN_CTX_free(ctx);
#else /* OPENSSL_VERSION_NUMBER < 0x10100000 || defined(LIBRESSL_VERSION_NUMBER) */
BN_CTX *ctx;
BIGNUM mod, exp, x, y;
uint8 inr[SEC_MAX_MODULUS_SIZE];
int outlen;
reverse(modulus, modulus_size);
reverse(exponent, SEC_EXPONENT_SIZE);
memcpy(inr, in, len);
reverse(inr, len);
ctx = BN_CTX_new();
BN_init(&mod);
BN_init(&exp);
BN_init(&x);
BN_init(&y);
BN_bin2bn(modulus, modulus_size, &mod);
BN_bin2bn(exponent, SEC_EXPONENT_SIZE, &exp);
BN_bin2bn(inr, len, &x);
BN_mod_exp(&y, &x, &exp, &mod, ctx);
outlen = BN_bn2bin(&y, out);
reverse(out, outlen);
if (outlen < (int) modulus_size)
memset(out + outlen, 0, modulus_size - outlen);
BN_free(&y);
BN_clear_free(&x);
BN_free(&exp);
BN_free(&mod);
BN_CTX_free(ctx);
#endif /* OPENSSL_VERSION_NUMBER < 0x10100000 || defined(LIBRESSL_VERSION_NUMBER) */
}
示例13: test_ecdh_curve
//.........这里部分代码省略.........
BIO_puts(out, " pri 2=");
BN_print(out, b->priv_key);
BIO_puts(out, "\n pub 2=");
BN_print(out, x_b);
BIO_puts(out, ",");
BN_print(out, y_b);
BIO_puts(out, "\n");
# else
BIO_printf(out, ".");
(void)BIO_flush(out);
# endif
alen = KDF1_SHA1_len;
abuf = OPENSSL_malloc(alen);
aout =
ECDH_compute_key(abuf, alen, EC_KEY_get0_public_key(b), a, KDF1_SHA1);
# ifdef NOISY
BIO_puts(out, " key1 =");
for (i = 0; i < aout; i++) {
sprintf(buf, "%02X", abuf[i]);
BIO_puts(out, buf);
}
BIO_puts(out, "\n");
# else
BIO_printf(out, ".");
(void)BIO_flush(out);
# endif
blen = KDF1_SHA1_len;
bbuf = OPENSSL_malloc(blen);
bout =
ECDH_compute_key(bbuf, blen, EC_KEY_get0_public_key(a), b, KDF1_SHA1);
# ifdef NOISY
BIO_puts(out, " key2 =");
for (i = 0; i < bout; i++) {
sprintf(buf, "%02X", bbuf[i]);
BIO_puts(out, buf);
}
BIO_puts(out, "\n");
# else
BIO_printf(out, ".");
(void)BIO_flush(out);
# endif
if ((aout < 4) || (bout != aout) || (memcmp(abuf, bbuf, aout) != 0)) {
# ifndef NOISY
BIO_printf(out, " failed\n\n");
BIO_printf(out, "key a:\n");
BIO_printf(out, "private key: ");
BN_print(out, EC_KEY_get0_private_key(a));
BIO_printf(out, "\n");
BIO_printf(out, "public key (x,y): ");
BN_print(out, x_a);
BIO_printf(out, ",");
BN_print(out, y_a);
BIO_printf(out, "\nkey b:\n");
BIO_printf(out, "private key: ");
BN_print(out, EC_KEY_get0_private_key(b));
BIO_printf(out, "\n");
BIO_printf(out, "public key (x,y): ");
BN_print(out, x_b);
BIO_printf(out, ",");
BN_print(out, y_b);
BIO_printf(out, "\n");
BIO_printf(out, "generated key a: ");
for (i = 0; i < bout; i++) {
sprintf(buf, "%02X", bbuf[i]);
BIO_puts(out, buf);
}
BIO_printf(out, "\n");
BIO_printf(out, "generated key b: ");
for (i = 0; i < aout; i++) {
sprintf(buf, "%02X", abuf[i]);
BIO_puts(out, buf);
}
BIO_printf(out, "\n");
# endif
fprintf(stderr, "Error in ECDH routines\n");
ret = 0;
} else {
# ifndef NOISY
BIO_printf(out, " ok\n");
# endif
ret = 1;
}
err:
ERR_print_errors_fp(stderr);
OPENSSL_free(abuf);
OPENSSL_free(bbuf);
BN_free(x_a);
BN_free(y_a);
BN_free(x_b);
BN_free(y_b);
EC_KEY_free(b);
EC_KEY_free(a);
return (ret);
}
示例14: BN_bn2bin
//.........这里部分代码省略.........
goto err;
if (!BN_rand_range(b, N))
goto err;
if (!(*B = BN_new()))
goto err;
if (!(ctx = BN_CTX_new()))
goto err;
if (!BN_mod_exp(*B, g, b, N, ctx))
goto err;
if (!(kv = BN_new()))
goto err;
if (!BN_mul(kv, k, v, ctx))
goto err;
if (!BN_add(*B, kv, *B))
goto err;
// S, C
// Compute string uH = SHA256(A|B), u = integer of uH
bn_bin1 = new unsigned char[BN_num_bytes(A)];
BN_bn2bin(A, bn_bin1);
bn_bin2 = new unsigned char[BN_num_bytes(*B)];
BN_bn2bin(*B, bn_bin2);
if (!SHA256_Init(&sha_ctx))
goto err;
if (!SHA256_Update(&sha_ctx, bn_bin1, BN_num_bytes(A)))
goto err;
if (!SHA256_Update(&sha_ctx, bn_bin2, BN_num_bytes(*B)))
goto err;
if (!SHA256_Final(uH, &sha_ctx))
goto err;
if (!(u = BN_new()))
goto err;
if (!BN_bin2bn(uH, SHA256_HASH_LEN, u))
goto err;
// S
// Generate S = (A * v**u) ** b % N
// Generate K = SHA256(S)
if (!(vu = BN_new()))
goto err;
if (!BN_mod_exp(vu, v, u, N, ctx))
goto err;
if (!(Avu = BN_new()))
goto err;
if (!BN_mul(Avu, A, vu, ctx))
goto err;
if (!(S = BN_new()))
goto err;
if (!BN_mod_exp(S, Avu, b, N, ctx))
goto err;
bn_bin3 = new unsigned char[BN_num_bytes(S)];
BN_bn2bin(S, bn_bin3);
if (!SHA256_Init(&sha_ctx))
goto err;
if (!SHA256_Update(&sha_ctx, bn_bin3, BN_num_bytes(S)))
goto err;
if (!SHA256_Final(K, &sha_ctx))
goto err;
hmac = new unsigned char[SHA256_HASH_LEN];
hmac = HMAC(EVP_sha256(), K, SHA256_HASH_LEN, (unsigned char *)(&salt), sizeof salt, hmac, &md_len);
*_salt = salt;
err:
if (b) BN_free(b);
if (kv) BN_free(kv);
if (u) BN_free(u);
if (S) BN_free(S);
if (vu) BN_free(vu);
if (Avu) BN_free(Avu);
if (ctx) BN_CTX_free(ctx);
if (bn_bin1) delete [] bn_bin1;
if (bn_bin2) delete [] bn_bin2;
if (bn_bin3) delete [] bn_bin3;
}
}
示例15: eap_pwd_perform_confirm_exchange
//.........这里部分代码省略.........
H_Final(&ctx, conf);
ptr = (u8 *) payload;
if (os_memcmp(conf, ptr, SHA256_DIGEST_LENGTH)) {
wpa_printf(MSG_INFO, "EAP-PWD (peer): confirm did not verify");
goto fin;
}
wpa_printf(MSG_DEBUG, "EAP-pwd (peer): confirm verified");
/*
* compute confirm:
* H(k | peer_element | peer_scalar | server_element | server_scalar |
* ciphersuite)
*/
H_Init(&ctx);
/* k */
os_memset(cruft, 0, BN_num_bytes(data->grp->prime));
BN_bn2bin(data->k, cruft);
H_Update(&ctx, cruft, BN_num_bytes(data->grp->prime));
/* my element */
if (!EC_POINT_get_affine_coordinates_GFp(data->grp->group,
data->my_element, x, y,
data->bnctx)) {
wpa_printf(MSG_INFO, "EAP-PWD (peer): confirm point "
"assignment fail");
goto fin;
}
os_memset(cruft, 0, BN_num_bytes(data->grp->prime));
BN_bn2bin(x, cruft);
H_Update(&ctx, cruft, BN_num_bytes(data->grp->prime));
os_memset(cruft, 0, BN_num_bytes(data->grp->prime));
BN_bn2bin(y, cruft);
H_Update(&ctx, cruft, BN_num_bytes(data->grp->prime));
/* my scalar */
os_memset(cruft, 0, BN_num_bytes(data->grp->prime));
BN_bn2bin(data->my_scalar, cruft);
H_Update(&ctx, cruft, BN_num_bytes(data->grp->order));
/* server element: x, y */
if (!EC_POINT_get_affine_coordinates_GFp(data->grp->group,
data->server_element, x, y,
data->bnctx)) {
wpa_printf(MSG_INFO, "EAP-PWD (peer): confirm point "
"assignment fail");
goto fin;
}
os_memset(cruft, 0, BN_num_bytes(data->grp->prime));
BN_bn2bin(x, cruft);
H_Update(&ctx, cruft, BN_num_bytes(data->grp->prime));
os_memset(cruft, 0, BN_num_bytes(data->grp->prime));
BN_bn2bin(y, cruft);
H_Update(&ctx, cruft, BN_num_bytes(data->grp->prime));
/* server scalar */
os_memset(cruft, 0, BN_num_bytes(data->grp->prime));
BN_bn2bin(data->server_scalar, cruft);
H_Update(&ctx, cruft, BN_num_bytes(data->grp->order));
/* the ciphersuite */
H_Update(&ctx, (u8 *) &cs, sizeof(u32));
/* all done */
H_Final(&ctx, conf);
resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_PWD,
sizeof(struct eap_pwd_hdr) + SHA256_DIGEST_LENGTH,
EAP_CODE_RESPONSE, eap_get_id(reqData));
if (resp == NULL)
goto fin;
wpabuf_put_u8(resp, EAP_PWD_OPCODE_CONFIRM_EXCH);
wpabuf_put_data(resp, conf, SHA256_DIGEST_LENGTH);
if (compute_keys(data->grp, data->bnctx, data->k,
data->my_scalar, data->server_scalar, conf, ptr,
&cs, data->msk, data->emsk) < 0) {
wpa_printf(MSG_INFO, "EAP-PWD (peer): unable to compute MSK | "
"EMSK");
goto fin;
}
fin:
os_free(cruft);
BN_free(x);
BN_free(y);
ret->methodState = METHOD_DONE;
if (resp == NULL) {
ret->decision = DECISION_FAIL;
eap_pwd_state(data, FAILURE);
} else {
ret->decision = DECISION_UNCOND_SUCC;
eap_pwd_state(data, SUCCESS);
}
return resp;
}