本文整理汇总了C++中BN_cmp函数的典型用法代码示例。如果您正苦于以下问题:C++ BN_cmp函数的具体用法?C++ BN_cmp怎么用?C++ BN_cmp使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了BN_cmp函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: void
RSA *RSA_generate_key(int bits, unsigned long e_value,
void (*callback)(int,int,void *), void *cb_arg)
{
RSA *rsa=NULL;
BIGNUM *r0=NULL,*r1=NULL,*r2=NULL,*r3=NULL,*tmp;
int bitsp,bitsq,ok= -1,n=0;
unsigned i;
BN_CTX *ctx=NULL,*ctx2=NULL;
ctx=BN_CTX_new();
if (ctx == NULL) goto err;
ctx2=BN_CTX_new();
if (ctx2 == NULL) goto err;
BN_CTX_start(ctx);
r0 = BN_CTX_get(ctx);
r1 = BN_CTX_get(ctx);
r2 = BN_CTX_get(ctx);
r3 = BN_CTX_get(ctx);
if (r3 == NULL) goto err;
bitsp=(bits+1)/2;
bitsq=bits-bitsp;
rsa=RSA_new();
if (rsa == NULL) goto err;
/* set e */
rsa->e=BN_new();
if (rsa->e == NULL) goto err;
#if 1
/* The problem is when building with 8, 16, or 32 BN_ULONG,
* unsigned long can be larger */
for (i=0; i<sizeof(unsigned long)*8; i++)
{
if (e_value & (((unsigned long)1)<<i))
BN_set_bit(rsa->e,i);
}
#else
if (!BN_set_word(rsa->e,e_value)) goto err;
#endif
/* generate p and q */
for (;;)
{
rsa->p=BN_generate_prime(NULL,bitsp,0,NULL,NULL,callback,cb_arg);
if (rsa->p == NULL) goto err;
if (!BN_sub(r2,rsa->p,BN_value_one())) goto err;
if (!BN_gcd(r1,r2,rsa->e,ctx)) goto err;
if (BN_is_one(r1)) break;
if (callback != NULL) callback(2,n++,cb_arg);
BN_free(rsa->p);
}
if (callback != NULL) callback(3,0,cb_arg);
for (;;)
{
rsa->q=BN_generate_prime(NULL,bitsq,0,NULL,NULL,callback,cb_arg);
if (rsa->q == NULL) goto err;
if (!BN_sub(r2,rsa->q,BN_value_one())) goto err;
if (!BN_gcd(r1,r2,rsa->e,ctx)) goto err;
if (BN_is_one(r1) && (BN_cmp(rsa->p,rsa->q) != 0))
break;
if (callback != NULL) callback(2,n++,cb_arg);
BN_free(rsa->q);
}
if (callback != NULL) callback(3,1,cb_arg);
if (BN_cmp(rsa->p,rsa->q) < 0)
{
tmp=rsa->p;
rsa->p=rsa->q;
rsa->q=tmp;
}
/* calculate n */
rsa->n=BN_new();
if (rsa->n == NULL) goto err;
if (!BN_mul(rsa->n,rsa->p,rsa->q,ctx)) goto err;
/* calculate d */
if (!BN_sub(r1,rsa->p,BN_value_one())) goto err; /* p-1 */
if (!BN_sub(r2,rsa->q,BN_value_one())) goto err; /* q-1 */
if (!BN_mul(r0,r1,r2,ctx)) goto err; /* (p-1)(q-1) */
/* should not be needed, since gcd(p-1,e) == 1 and gcd(q-1,e) == 1 */
/* for (;;)
{
if (!BN_gcd(r3,r0,rsa->e,ctx)) goto err;
if (BN_is_one(r3)) break;
if (1)
{
if (!BN_add_word(rsa->e,2L)) goto err;
continue;
}
RSAerr(RSA_F_RSA_GENERATE_KEY,RSA_R_BAD_E_VALUE);
goto err;
}
*/
rsa->d=BN_mod_inverse(NULL,rsa->e,r0,ctx2); /* d */
if (rsa->d == NULL) goto err;
//.........这里部分代码省略.........
示例2: ec_GFp_simple_cmp
int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
const EC_POINT *b, BN_CTX *ctx) {
/* return values:
* -1 error
* 0 equal (in affine coordinates)
* 1 not equal
*/
int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
BN_CTX *);
int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
BN_CTX *new_ctx = NULL;
BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
const BIGNUM *tmp1_, *tmp2_;
int ret = -1;
if (EC_POINT_is_at_infinity(group, a)) {
return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
}
if (EC_POINT_is_at_infinity(group, b)) {
return 1;
}
int a_Z_is_one = BN_cmp(&a->Z, &group->one) == 0;
int b_Z_is_one = BN_cmp(&b->Z, &group->one) == 0;
if (a_Z_is_one && b_Z_is_one) {
return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
}
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
return -1;
}
}
BN_CTX_start(ctx);
tmp1 = BN_CTX_get(ctx);
tmp2 = BN_CTX_get(ctx);
Za23 = BN_CTX_get(ctx);
Zb23 = BN_CTX_get(ctx);
if (Zb23 == NULL) {
goto end;
}
/* We have to decide whether
* (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
* or equivalently, whether
* (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
*/
if (!b_Z_is_one) {
if (!field_sqr(group, Zb23, &b->Z, ctx) ||
!field_mul(group, tmp1, &a->X, Zb23, ctx)) {
goto end;
}
tmp1_ = tmp1;
} else {
tmp1_ = &a->X;
}
if (!a_Z_is_one) {
if (!field_sqr(group, Za23, &a->Z, ctx) ||
!field_mul(group, tmp2, &b->X, Za23, ctx)) {
goto end;
}
tmp2_ = tmp2;
} else {
tmp2_ = &b->X;
}
/* compare X_a*Z_b^2 with X_b*Z_a^2 */
if (BN_cmp(tmp1_, tmp2_) != 0) {
ret = 1; /* points differ */
goto end;
}
if (!b_Z_is_one) {
if (!field_mul(group, Zb23, Zb23, &b->Z, ctx) ||
!field_mul(group, tmp1, &a->Y, Zb23, ctx)) {
goto end;
}
/* tmp1_ = tmp1 */
} else {
tmp1_ = &a->Y;
}
if (!a_Z_is_one) {
if (!field_mul(group, Za23, Za23, &a->Z, ctx) ||
!field_mul(group, tmp2, &b->Y, Za23, ctx)) {
goto end;
}
/* tmp2_ = tmp2 */
} else {
tmp2_ = &b->Y;
}
//.........这里部分代码省略.........
示例3: void
//.........这里部分代码省略.........
/* step 7 */
if (!BN_zero(W)) goto err;
/* now 'buf' contains "SEED + offset - 1" */
for (k=0; k<=n; k++)
{
/* obtain "SEED + offset + k" by incrementing: */
for (i=SHA_DIGEST_LENGTH-1; i >= 0; i--)
{
buf[i]++;
if (buf[i] != 0) break;
}
EVP_Digest(buf,SHA_DIGEST_LENGTH,md,NULL,HASH, NULL);
/* step 8 */
if (!BN_bin2bn(md,SHA_DIGEST_LENGTH,r0))
goto err;
if (!BN_lshift(r0,r0,160*k)) goto err;
if (!BN_add(W,W,r0)) goto err;
}
/* more of step 8 */
if (!BN_mask_bits(W,bits-1)) goto err;
if (!BN_copy(X,W)) goto err;
if (!BN_add(X,X,test)) goto err;
/* step 9 */
if (!BN_lshift1(r0,q)) goto err;
if (!BN_mod(c,X,r0,ctx)) goto err;
if (!BN_sub(r0,c,BN_value_one())) goto err;
if (!BN_sub(p,X,r0)) goto err;
/* step 10 */
if (BN_cmp(p,test) >= 0)
{
/* step 11 */
r = BN_is_prime_fasttest(p, DSS_prime_checks, callback, ctx3, cb_arg, 1);
if (r > 0)
goto end; /* found it */
if (r != 0)
goto err;
}
/* step 13 */
counter++;
/* "offset = offset + n + 1" */
/* step 14 */
if (counter >= 4096) break;
}
}
end:
if (callback != NULL) callback(2,1,cb_arg);
/* We now need to generate g */
/* Set r0=(p-1)/q */
if (!BN_sub(test,p,BN_value_one())) goto err;
if (!BN_div(r0,NULL,test,q,ctx)) goto err;
if (!BN_set_word(test,h)) goto err;
if (!BN_MONT_CTX_set(mont,p,ctx)) goto err;
for (;;)
{
/* g=test^r0%p */
if (!BN_mod_exp_mont(g,test,r0,p,ctx,mont)) goto err;
示例4: ec_GFp_simple_group_set_curve
int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p,
const BIGNUM *a, const BIGNUM *b,
BN_CTX *ctx) {
int ret = 0;
BN_CTX *new_ctx = NULL;
BIGNUM *tmp_a;
/* p must be a prime > 3 */
if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD);
return 0;
}
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
}
BN_CTX_start(ctx);
tmp_a = BN_CTX_get(ctx);
if (tmp_a == NULL) {
goto err;
}
/* group->field */
if (!BN_copy(&group->field, p)) {
goto err;
}
BN_set_negative(&group->field, 0);
/* group->a */
if (!BN_nnmod(tmp_a, a, p, ctx)) {
goto err;
}
if (group->meth->field_encode) {
if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) {
goto err;
}
} else if (!BN_copy(&group->a, tmp_a)) {
goto err;
}
/* group->b */
if (!BN_nnmod(&group->b, b, p, ctx)) {
goto err;
}
if (group->meth->field_encode &&
!group->meth->field_encode(group, &group->b, &group->b, ctx)) {
goto err;
}
/* group->a_is_minus3 */
if (!BN_add_word(tmp_a, 3)) {
goto err;
}
group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field));
if (group->meth->field_encode != NULL) {
if (!group->meth->field_encode(group, &group->one, BN_value_one(), ctx)) {
goto err;
}
} else if (!BN_copy(&group->one, BN_value_one())) {
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
示例5: ec_GFp_simple_dbl
int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
BN_CTX *ctx) {
int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
BN_CTX *);
int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
const BIGNUM *p;
BN_CTX *new_ctx = NULL;
BIGNUM *n0, *n1, *n2, *n3;
int ret = 0;
if (EC_POINT_is_at_infinity(group, a)) {
BN_zero(&r->Z);
return 1;
}
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
p = &group->field;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
}
BN_CTX_start(ctx);
n0 = BN_CTX_get(ctx);
n1 = BN_CTX_get(ctx);
n2 = BN_CTX_get(ctx);
n3 = BN_CTX_get(ctx);
if (n3 == NULL) {
goto err;
}
/* Note that in this function we must not read components of 'a'
* once we have written the corresponding components of 'r'.
* ('r' might the same as 'a'.)
*/
/* n1 */
if (BN_cmp(&a->Z, &group->one) == 0) {
if (!field_sqr(group, n0, &a->X, ctx) ||
!BN_mod_lshift1_quick(n1, n0, p) ||
!BN_mod_add_quick(n0, n0, n1, p) ||
!BN_mod_add_quick(n1, n0, &group->a, p)) {
goto err;
}
/* n1 = 3 * X_a^2 + a_curve */
} else if (group->a_is_minus3) {
if (!field_sqr(group, n1, &a->Z, ctx) ||
!BN_mod_add_quick(n0, &a->X, n1, p) ||
!BN_mod_sub_quick(n2, &a->X, n1, p) ||
!field_mul(group, n1, n0, n2, ctx) ||
!BN_mod_lshift1_quick(n0, n1, p) ||
!BN_mod_add_quick(n1, n0, n1, p)) {
goto err;
}
/* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
* = 3 * X_a^2 - 3 * Z_a^4 */
} else {
if (!field_sqr(group, n0, &a->X, ctx) ||
!BN_mod_lshift1_quick(n1, n0, p) ||
!BN_mod_add_quick(n0, n0, n1, p) ||
!field_sqr(group, n1, &a->Z, ctx) ||
!field_sqr(group, n1, n1, ctx) ||
!field_mul(group, n1, n1, &group->a, ctx) ||
!BN_mod_add_quick(n1, n1, n0, p)) {
goto err;
}
/* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
}
/* Z_r */
if (BN_cmp(&a->Z, &group->one) == 0) {
if (!BN_copy(n0, &a->Y)) {
goto err;
}
} else if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) {
goto err;
}
if (!BN_mod_lshift1_quick(&r->Z, n0, p)) {
goto err;
}
/* Z_r = 2 * Y_a * Z_a */
/* n2 */
if (!field_sqr(group, n3, &a->Y, ctx) ||
!field_mul(group, n2, &a->X, n3, ctx) ||
!BN_mod_lshift_quick(n2, n2, 2, p)) {
goto err;
}
/* n2 = 4 * X_a * Y_a^2 */
/* X_r */
if (!BN_mod_lshift1_quick(n0, n2, p) ||
!field_sqr(group, &r->X, n1, ctx) ||
!BN_mod_sub_quick(&r->X, &r->X, n0, p)) {
goto err;
}
//.........这里部分代码省略.........
示例6: x9_62_test_internal
/* some tests from the X9.62 draft */
int x9_62_test_internal(BIO *out, int nid, const char *r_in, const char *s_in)
{
int ret = 0;
const char message[] = "abc";
unsigned char digest[20];
unsigned int dgst_len = 0;
EVP_MD_CTX md_ctx;
EC_KEY *key = NULL;
ECDSA_SIG *signature = NULL;
BIGNUM *r = NULL, *s = NULL;
BIGNUM *kinv = NULL, *rp = NULL;
EVP_MD_CTX_init(&md_ctx);
/* get the message digest */
if (!EVP_DigestInit(&md_ctx, EVP_ecdsa())
|| !EVP_DigestUpdate(&md_ctx, (const void *)message, 3)
|| !EVP_DigestFinal(&md_ctx, digest, &dgst_len))
goto x962_int_err;
BIO_printf(out, "testing %s: ", OBJ_nid2sn(nid));
/* create the key */
if ((key = EC_KEY_new_by_curve_name(nid)) == NULL)
goto x962_int_err;
use_fake = 1;
if (!EC_KEY_generate_key(key))
goto x962_int_err;
BIO_printf(out, ".");
(void)BIO_flush(out);
/* create the signature */
use_fake = 1;
/* Use ECDSA_sign_setup to avoid use of ECDSA nonces */
if (!ECDSA_sign_setup(key, NULL, &kinv, &rp))
goto x962_int_err;
signature = ECDSA_do_sign_ex(digest, 20, kinv, rp, key);
if (signature == NULL)
goto x962_int_err;
BIO_printf(out, ".");
(void)BIO_flush(out);
/* compare the created signature with the expected signature */
if ((r = BN_new()) == NULL || (s = BN_new()) == NULL)
goto x962_int_err;
if (!BN_dec2bn(&r, r_in) || !BN_dec2bn(&s, s_in))
goto x962_int_err;
if (BN_cmp(signature->r, r) || BN_cmp(signature->s, s))
goto x962_int_err;
BIO_printf(out, ".");
(void)BIO_flush(out);
/* verify the signature */
if (ECDSA_do_verify(digest, 20, signature, key) != 1)
goto x962_int_err;
BIO_printf(out, ".");
(void)BIO_flush(out);
BIO_printf(out, " ok\n");
ret = 1;
x962_int_err:
if (!ret)
BIO_printf(out, " failed\n");
EC_KEY_free(key);
ECDSA_SIG_free(signature);
BN_free(r);
BN_free(s);
EVP_MD_CTX_cleanup(&md_ctx);
BN_clear_free(kinv);
BN_clear_free(rp);
return ret;
}
示例7: run_srp
static int run_srp(const char *username, const char *client_pass,
const char *server_pass)
{
int ret = -1;
BIGNUM *s = NULL;
BIGNUM *v = NULL;
BIGNUM *a = NULL;
BIGNUM *b = NULL;
BIGNUM *u = NULL;
BIGNUM *x = NULL;
BIGNUM *Apub = NULL;
BIGNUM *Bpub = NULL;
BIGNUM *Kclient = NULL;
BIGNUM *Kserver = NULL;
unsigned char rand_tmp[RANDOM_SIZE];
/* use builtin 1024-bit params */
const SRP_gN *GN = SRP_get_default_gN("1024");
if (GN == NULL) {
fprintf(stderr, "Failed to get SRP parameters\n");
return -1;
}
/* Set up server's password entry */
if (!SRP_create_verifier_BN(username, server_pass, &s, &v, GN->N, GN->g)) {
fprintf(stderr, "Failed to create SRP verifier\n");
return -1;
}
showbn("N", GN->N);
showbn("g", GN->g);
showbn("Salt", s);
showbn("Verifier", v);
/* Server random */
RAND_bytes(rand_tmp, sizeof(rand_tmp));
b = BN_bin2bn(rand_tmp, sizeof(rand_tmp), NULL);
/* TODO - check b != 0 */
showbn("b", b);
/* Server's first message */
Bpub = SRP_Calc_B(b, GN->N, GN->g, v);
showbn("B", Bpub);
if (!SRP_Verify_B_mod_N(Bpub, GN->N)) {
fprintf(stderr, "Invalid B\n");
return -1;
}
/* Client random */
RAND_bytes(rand_tmp, sizeof(rand_tmp));
a = BN_bin2bn(rand_tmp, sizeof(rand_tmp), NULL);
/* TODO - check a != 0 */
showbn("a", a);
/* Client's response */
Apub = SRP_Calc_A(a, GN->N, GN->g);
showbn("A", Apub);
if (!SRP_Verify_A_mod_N(Apub, GN->N)) {
fprintf(stderr, "Invalid A\n");
return -1;
}
/* Both sides calculate u */
u = SRP_Calc_u(Apub, Bpub, GN->N);
/* Client's key */
x = SRP_Calc_x(s, username, client_pass);
Kclient = SRP_Calc_client_key(GN->N, Bpub, GN->g, x, a, u);
showbn("Client's key", Kclient);
/* Server's key */
Kserver = SRP_Calc_server_key(Apub, v, u, b, GN->N);
showbn("Server's key", Kserver);
if (BN_cmp(Kclient, Kserver) == 0) {
ret = 0;
} else {
fprintf(stderr, "Keys mismatch\n");
ret = 1;
}
BN_clear_free(Kclient);
BN_clear_free(Kserver);
BN_clear_free(x);
BN_free(u);
BN_free(Apub);
BN_clear_free(a);
BN_free(Bpub);
BN_clear_free(b);
BN_free(s);
BN_clear_free(v);
return ret;
}
示例8: main
int main(int argc, char *argv[])
{
BN_CTX *ctx;
BIO *out = NULL;
int i, ret;
unsigned char c;
BIGNUM *r_mont, *r_mont_const, *r_recp, *r_simple, *a, *b, *m;
RAND_seed(rnd_seed, sizeof rnd_seed); /* or BN_rand may fail, and we
* don't even check its return
* value (which we should) */
ERR_load_BN_strings();
ctx = BN_CTX_new();
if (ctx == NULL)
EXIT(1);
r_mont = BN_new();
r_mont_const = BN_new();
r_recp = BN_new();
r_simple = BN_new();
a = BN_new();
b = BN_new();
m = BN_new();
if ((r_mont == NULL) || (r_recp == NULL) || (a == NULL) || (b == NULL))
goto err;
out = BIO_new(BIO_s_file());
if (out == NULL)
EXIT(1);
BIO_set_fp(out, stdout, BIO_NOCLOSE);
for (i = 0; i < 200; i++) {
RAND_bytes(&c, 1);
c = (c % BN_BITS) - BN_BITS2;
BN_rand(a, NUM_BITS + c, 0, 0);
RAND_bytes(&c, 1);
c = (c % BN_BITS) - BN_BITS2;
BN_rand(b, NUM_BITS + c, 0, 0);
RAND_bytes(&c, 1);
c = (c % BN_BITS) - BN_BITS2;
BN_rand(m, NUM_BITS + c, 0, 1);
BN_mod(a, a, m, ctx);
BN_mod(b, b, m, ctx);
ret = BN_mod_exp_mont(r_mont, a, b, m, ctx, NULL);
if (ret <= 0) {
printf("BN_mod_exp_mont() problems\n");
ERR_print_errors(out);
EXIT(1);
}
ret = BN_mod_exp_recp(r_recp, a, b, m, ctx);
if (ret <= 0) {
printf("BN_mod_exp_recp() problems\n");
ERR_print_errors(out);
EXIT(1);
}
ret = BN_mod_exp_simple(r_simple, a, b, m, ctx);
if (ret <= 0) {
printf("BN_mod_exp_simple() problems\n");
ERR_print_errors(out);
EXIT(1);
}
ret = BN_mod_exp_mont_consttime(r_mont_const, a, b, m, ctx, NULL);
if (ret <= 0) {
printf("BN_mod_exp_mont_consttime() problems\n");
ERR_print_errors(out);
EXIT(1);
}
if (BN_cmp(r_simple, r_mont) == 0
&& BN_cmp(r_simple, r_recp) == 0
&& BN_cmp(r_simple, r_mont_const) == 0) {
printf(".");
fflush(stdout);
} else {
if (BN_cmp(r_simple, r_mont) != 0)
printf("\nsimple and mont results differ\n");
if (BN_cmp(r_simple, r_mont_const) != 0)
printf("\nsimple and mont const time results differ\n");
if (BN_cmp(r_simple, r_recp) != 0)
printf("\nsimple and recp results differ\n");
printf("a (%3d) = ", BN_num_bits(a));
BN_print(out, a);
printf("\nb (%3d) = ", BN_num_bits(b));
BN_print(out, b);
printf("\nm (%3d) = ", BN_num_bits(m));
BN_print(out, m);
printf("\nsimple =");
BN_print(out, r_simple);
printf("\nrecp =");
BN_print(out, r_recp);
//.........这里部分代码省略.........
示例9: schnorr_sign
/*
* Generate Schnorr signature to prove knowledge of private value 'x' used
* in public exponent g^x, under group defined by 'grp_p', 'grp_q' and 'grp_g'
* using the hash function "hash_alg".
* 'idlen' bytes from 'id' will be included in the signature hash as an anti-
* replay salt.
*
* On success, 0 is returned. The signature values are returned as *e_p
* (g^v mod p) and *r_p (v - xh mod q). The caller must free these values.
* On failure, -1 is returned.
*/
int
schnorr_sign(const BIGNUM *grp_p, const BIGNUM *grp_q, const BIGNUM *grp_g,
int hash_alg, const BIGNUM *x, const BIGNUM *g_x,
const u_char *id, u_int idlen, BIGNUM **r_p, BIGNUM **e_p)
{
int success = -1;
BIGNUM *h, *tmp, *v, *g_v, *r;
BN_CTX *bn_ctx;
SCHNORR_DEBUG_BN((x, "%s: x = ", __func__));
SCHNORR_DEBUG_BN((g_x, "%s: g_x = ", __func__));
/* Avoid degenerate cases: g^0 yields a spoofable signature */
if (BN_cmp(g_x, BN_value_one()) <= 0) {
error("%s: g_x < 1", __func__);
return -1;
}
if (BN_cmp(g_x, grp_p) >= 0) {
error("%s: g_x > g", __func__);
return -1;
}
h = g_v = r = tmp = v = NULL;
if ((bn_ctx = BN_CTX_new()) == NULL) {
error("%s: BN_CTX_new", __func__);
goto out;
}
if ((g_v = BN_new()) == NULL ||
(r = BN_new()) == NULL ||
(tmp = BN_new()) == NULL) {
error("%s: BN_new", __func__);
goto out;
}
/*
* v must be a random element of Zq, so 1 <= v < q
* we also exclude v = 1, since g^1 looks dangerous
*/
if ((v = bn_rand_range_gt_one(grp_p)) == NULL) {
error("%s: bn_rand_range2", __func__);
goto out;
}
SCHNORR_DEBUG_BN((v, "%s: v = ", __func__));
/* g_v = g^v mod p */
if (BN_mod_exp(g_v, grp_g, v, grp_p, bn_ctx) == -1) {
error("%s: BN_mod_exp (g^v mod p)", __func__);
goto out;
}
SCHNORR_DEBUG_BN((g_v, "%s: g_v = ", __func__));
/* h = H(g || g^v || g^x || id) */
if ((h = schnorr_hash(grp_p, grp_q, grp_g, hash_alg, g_v, g_x,
id, idlen)) == NULL) {
error("%s: schnorr_hash failed", __func__);
goto out;
}
/* r = v - xh mod q */
if (BN_mod_mul(tmp, x, h, grp_q, bn_ctx) == -1) {
error("%s: BN_mod_mul (tmp = xv mod q)", __func__);
goto out;
}
if (BN_mod_sub(r, v, tmp, grp_q, bn_ctx) == -1) {
error("%s: BN_mod_mul (r = v - tmp)", __func__);
goto out;
}
SCHNORR_DEBUG_BN((g_v, "%s: e = ", __func__));
SCHNORR_DEBUG_BN((r, "%s: r = ", __func__));
*e_p = g_v;
*r_p = r;
success = 0;
out:
BN_CTX_free(bn_ctx);
if (h != NULL)
BN_clear_free(h);
if (v != NULL)
BN_clear_free(v);
BN_clear_free(tmp);
return success;
}
示例10: BN_init
static DSA_SIG *dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa)
{
BIGNUM *kinv=NULL,*r=NULL,*s=NULL;
BIGNUM m;
BIGNUM xr;
BN_CTX *ctx=NULL;
int i,reason=ERR_R_BN_LIB;
DSA_SIG *ret=NULL;
BN_init(&m);
BN_init(&xr);
if (!dsa->p || !dsa->q || !dsa->g)
{
reason=DSA_R_MISSING_PARAMETERS;
goto err;
}
s=BN_new();
if (s == NULL) goto err;
i=BN_num_bytes(dsa->q); /* should be 20 */
if ((dlen > i) || (dlen > 50))
{
reason=DSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE;
goto err;
}
ctx=BN_CTX_new();
if (ctx == NULL) goto err;
if ((dsa->kinv == NULL) || (dsa->r == NULL))
{
if (!DSA_sign_setup(dsa,ctx,&kinv,&r)) goto err;
}
else
{
kinv=dsa->kinv;
dsa->kinv=NULL;
r=dsa->r;
dsa->r=NULL;
}
if (BN_bin2bn(dgst,dlen,&m) == NULL) goto err;
/* Compute s = inv(k) (m + xr) mod q */
if (!BN_mod_mul(&xr,dsa->priv_key,r,dsa->q,ctx)) goto err;/* s = xr */
if (!BN_add(s, &xr, &m)) goto err; /* s = m + xr */
if (BN_cmp(s,dsa->q) > 0)
BN_sub(s,s,dsa->q);
if (!BN_mod_mul(s,s,kinv,dsa->q,ctx)) goto err;
ret=DSA_SIG_new();
if (ret == NULL) goto err;
ret->r = r;
ret->s = s;
err:
if (!ret)
{
DSAerr(DSA_F_DSA_DO_SIGN,reason);
BN_free(r);
BN_free(s);
}
if (ctx != NULL) BN_CTX_free(ctx);
BN_clear_free(&m);
BN_clear_free(&xr);
if (kinv != NULL) /* dsa->kinv is NULL now if we used it */
BN_clear_free(kinv);
return(ret);
}
示例11: DH_check
int DH_check(const DH *dh, int *ret)
{
int ok=0;
BN_CTX *ctx=NULL;
BN_ULONG l;
BIGNUM *t1=NULL, *t2 = NULL;
*ret=0;
ctx=BN_CTX_new();
if (ctx == NULL) goto err;
BN_CTX_start(ctx);
t1=BN_CTX_get(ctx);
if (t1 == NULL) goto err;
t2=BN_CTX_get(ctx);
if (t2 == NULL) goto err;
if (dh->q)
{
if (BN_cmp(dh->g, BN_value_one()) <= 0)
*ret|=DH_NOT_SUITABLE_GENERATOR;
else if (BN_cmp(dh->g, dh->p) >= 0)
*ret|=DH_NOT_SUITABLE_GENERATOR;
else
{
/* Check g^q == 1 mod p */
if (!BN_mod_exp(t1, dh->g, dh->q, dh->p, ctx))
goto err;
if (!BN_is_one(t1))
*ret|=DH_NOT_SUITABLE_GENERATOR;
}
if (!BN_is_prime_ex(dh->q,BN_prime_checks,ctx,NULL))
*ret|=DH_CHECK_Q_NOT_PRIME;
/* Check p == 1 mod q i.e. q divides p - 1 */
if (!BN_div(t1, t2, dh->p, dh->q, ctx))
goto err;
if (!BN_is_one(t2))
*ret|=DH_CHECK_INVALID_Q_VALUE;
if (dh->j && BN_cmp(dh->j, t1))
*ret|=DH_CHECK_INVALID_J_VALUE;
}
else if (BN_is_word(dh->g,DH_GENERATOR_2))
{
l=BN_mod_word(dh->p,24);
if (l != 11) *ret|=DH_NOT_SUITABLE_GENERATOR;
}
#if 0
else if (BN_is_word(dh->g,DH_GENERATOR_3))
{
l=BN_mod_word(dh->p,12);
if (l != 5) *ret|=DH_NOT_SUITABLE_GENERATOR;
}
#endif
else if (BN_is_word(dh->g,DH_GENERATOR_5))
{
l=BN_mod_word(dh->p,10);
if ((l != 3) && (l != 7))
*ret|=DH_NOT_SUITABLE_GENERATOR;
}
else
*ret|=DH_UNABLE_TO_CHECK_GENERATOR;
if (!BN_is_prime_ex(dh->p,BN_prime_checks,ctx,NULL))
*ret|=DH_CHECK_P_NOT_PRIME;
else if (!dh->q)
{
if (!BN_rshift1(t1,dh->p)) goto err;
if (!BN_is_prime_ex(t1,BN_prime_checks,ctx,NULL))
*ret|=DH_CHECK_P_NOT_SAFE_PRIME;
}
ok=1;
err:
if (ctx != NULL)
{
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
return(ok);
}
示例12: BN_mod_sqrt
//.........这里部分代码省略.........
BN_zero(ret);
err = 0;
goto end;
} else if (!BN_one(x))
goto end;
} else {
if (!BN_mod_exp(x, A, t, p, ctx))
goto end;
if (BN_is_zero(x)) {
/* special case: a == 0 (mod p) */
BN_zero(ret);
err = 0;
goto end;
}
}
/* b := a*x^2 (= a^q) */
if (!BN_mod_sqr(b, x, p, ctx))
goto end;
if (!BN_mod_mul(b, b, A, p, ctx))
goto end;
/* x := a*x (= a^((q+1)/2)) */
if (!BN_mod_mul(x, x, A, p, ctx))
goto end;
while (1) {
/* Now b is a^q * y^k for some even k (0 <= k < 2^E
* where E refers to the original value of e, which we
* don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
*
* We have a*b = x^2,
* y^2^(e-1) = -1,
* b^2^(e-1) = 1.
*/
if (BN_is_one(b)) {
if (!BN_copy(ret, x))
goto end;
err = 0;
goto vrfy;
}
/* find smallest i such that b^(2^i) = 1 */
i = 1;
if (!BN_mod_sqr(t, b, p, ctx))
goto end;
while (!BN_is_one(t)) {
i++;
if (i == e) {
BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
goto end;
}
if (!BN_mod_mul(t, t, t, p, ctx))
goto end;
}
/* t := y^2^(e - i - 1) */
if (!BN_copy(t, y))
goto end;
for (j = e - i - 1; j > 0; j--) {
if (!BN_mod_sqr(t, t, p, ctx))
goto end;
}
if (!BN_mod_mul(y, t, t, p, ctx))
goto end;
if (!BN_mod_mul(x, x, t, p, ctx))
goto end;
if (!BN_mod_mul(b, b, y, p, ctx))
goto end;
e = i;
}
vrfy:
if (!err) {
/* verify the result -- the input might have been not a square
* (test added in 0.9.8) */
if (!BN_mod_sqr(x, ret, p, ctx))
err = 1;
if (!err && 0 != BN_cmp(x, A)) {
BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
err = 1;
}
}
end:
if (err) {
if (ret != NULL && ret != in) {
BN_clear_free(ret);
}
ret = NULL;
}
BN_CTX_end(ctx);
bn_check_top(ret);
return ret;
}
示例13: BN_new
//.........这里部分代码省略.........
} else {
if (!BN_mod_exp_mont(x, A, t, p, ctx, NULL)) {
goto end;
}
if (BN_is_zero(x)) {
// special case: a == 0 (mod p)
BN_zero(ret);
err = 0;
goto end;
}
}
// b := a*x^2 (= a^q)
if (!BN_mod_sqr(b, x, p, ctx) ||
!BN_mod_mul(b, b, A, p, ctx)) {
goto end;
}
// x := a*x (= a^((q+1)/2))
if (!BN_mod_mul(x, x, A, p, ctx)) {
goto end;
}
while (1) {
// Now b is a^q * y^k for some even k (0 <= k < 2^E
// where E refers to the original value of e, which we
// don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
//
// We have a*b = x^2,
// y^2^(e-1) = -1,
// b^2^(e-1) = 1.
if (BN_is_one(b)) {
if (!BN_copy(ret, x)) {
goto end;
}
err = 0;
goto vrfy;
}
// find smallest i such that b^(2^i) = 1
i = 1;
if (!BN_mod_sqr(t, b, p, ctx)) {
goto end;
}
while (!BN_is_one(t)) {
i++;
if (i == e) {
OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
goto end;
}
if (!BN_mod_mul(t, t, t, p, ctx)) {
goto end;
}
}
// t := y^2^(e - i - 1)
if (!BN_copy(t, y)) {
goto end;
}
for (j = e - i - 1; j > 0; j--) {
if (!BN_mod_sqr(t, t, p, ctx)) {
goto end;
}
}
if (!BN_mod_mul(y, t, t, p, ctx) ||
!BN_mod_mul(x, x, t, p, ctx) ||
!BN_mod_mul(b, b, y, p, ctx)) {
goto end;
}
e = i;
}
vrfy:
if (!err) {
// verify the result -- the input might have been not a square
// (test added in 0.9.8)
if (!BN_mod_sqr(x, ret, p, ctx)) {
err = 1;
}
if (!err && 0 != BN_cmp(x, A)) {
OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
err = 1;
}
}
end:
if (err) {
if (ret != in) {
BN_clear_free(ret);
}
ret = NULL;
}
BN_CTX_end(ctx);
return ret;
}
示例14: BN_sqrt
int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx) {
BIGNUM *estimate, *tmp, *delta, *last_delta, *tmp2;
int ok = 0, last_delta_valid = 0;
if (in->neg) {
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
return 0;
}
if (BN_is_zero(in)) {
BN_zero(out_sqrt);
return 1;
}
BN_CTX_start(ctx);
if (out_sqrt == in) {
estimate = BN_CTX_get(ctx);
} else {
estimate = out_sqrt;
}
tmp = BN_CTX_get(ctx);
last_delta = BN_CTX_get(ctx);
delta = BN_CTX_get(ctx);
if (estimate == NULL || tmp == NULL || last_delta == NULL || delta == NULL) {
OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
goto err;
}
// We estimate that the square root of an n-bit number is 2^{n/2}.
if (!BN_lshift(estimate, BN_value_one(), BN_num_bits(in)/2)) {
goto err;
}
// This is Newton's method for finding a root of the equation |estimate|^2 -
// |in| = 0.
for (;;) {
// |estimate| = 1/2 * (|estimate| + |in|/|estimate|)
if (!BN_div(tmp, NULL, in, estimate, ctx) ||
!BN_add(tmp, tmp, estimate) ||
!BN_rshift1(estimate, tmp) ||
// |tmp| = |estimate|^2
!BN_sqr(tmp, estimate, ctx) ||
// |delta| = |in| - |tmp|
!BN_sub(delta, in, tmp)) {
OPENSSL_PUT_ERROR(BN, ERR_R_BN_LIB);
goto err;
}
delta->neg = 0;
// The difference between |in| and |estimate| squared is required to always
// decrease. This ensures that the loop always terminates, but I don't have
// a proof that it always finds the square root for a given square.
if (last_delta_valid && BN_cmp(delta, last_delta) >= 0) {
break;
}
last_delta_valid = 1;
tmp2 = last_delta;
last_delta = delta;
delta = tmp2;
}
if (BN_cmp(tmp, in) != 0) {
OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
goto err;
}
ok = 1;
err:
if (ok && out_sqrt == in && !BN_copy(out_sqrt, estimate)) {
ok = 0;
}
BN_CTX_end(ctx);
return ok;
}
示例15: FIPSerr
static DSA_SIG *dsa_do_sign(const unsigned char *dgst, FIPS_DSA_SIZE_T dlen, DSA *dsa)
{
BIGNUM *kinv=NULL,*r=NULL,*s=NULL;
BIGNUM m;
BIGNUM xr;
BN_CTX *ctx=NULL;
int i,reason=ERR_R_BN_LIB;
DSA_SIG *ret=NULL;
if(FIPS_selftest_failed())
{
FIPSerr(FIPS_F_DSA_DO_SIGN,FIPS_R_FIPS_SELFTEST_FAILED);
return NULL;
}
if (FIPS_mode() && (BN_num_bits(dsa->p) < OPENSSL_DSA_FIPS_MIN_MODULUS_BITS))
{
DSAerr(DSA_F_DSA_DO_SIGN, DSA_R_KEY_SIZE_TOO_SMALL);
return NULL;
}
BN_init(&m);
BN_init(&xr);
if (!dsa->p || !dsa->q || !dsa->g)
{
reason=DSA_R_MISSING_PARAMETERS;
goto err;
}
s=BN_new();
if (s == NULL) goto err;
i=BN_num_bytes(dsa->q); /* should be 20 */
if ((dlen > i) || (dlen > 50))
{
reason=DSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE;
goto err;
}
ctx=BN_CTX_new();
if (ctx == NULL) goto err;
if (!dsa->meth->dsa_sign_setup(dsa,ctx,&kinv,&r)) goto err;
if (BN_bin2bn(dgst,dlen,&m) == NULL) goto err;
/* Compute s = inv(k) (m + xr) mod q */
if (!BN_mod_mul(&xr,dsa->priv_key,r,dsa->q,ctx)) goto err;/* s = xr */
if (!BN_add(s, &xr, &m)) goto err; /* s = m + xr */
if (BN_cmp(s,dsa->q) > 0)
BN_sub(s,s,dsa->q);
if (!BN_mod_mul(s,s,kinv,dsa->q,ctx)) goto err;
ret= DSA_SIG_new();
if (ret == NULL) goto err;
ret->r = r;
ret->s = s;
err:
if (!ret)
{
DSAerr(DSA_F_DSA_DO_SIGN,reason);
BN_free(r);
BN_free(s);
}
if (ctx != NULL) BN_CTX_free(ctx);
BN_clear_free(&m);
BN_clear_free(&xr);
if (kinv != NULL) /* dsa->kinv is NULL now if we used it */
BN_clear_free(kinv);
return(ret);
}