本文整理汇总了C++中ASSIGN_STATE函数的典型用法代码示例。如果您正苦于以下问题:C++ ASSIGN_STATE函数的具体用法?C++ ASSIGN_STATE怎么用?C++ ASSIGN_STATE使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ASSIGN_STATE函数的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: decode_mcu_DC_first
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec;
phuff_entropy_ptr entropy = (phuff_entropy_ptr) lossyd->entropy_private;
int Al = cinfo->Al;
register int s, r;
int blkn, ci;
JBLOCKROW block;
BITREAD_STATE_VARS;
savable_state state;
d_derived_tbl * tbl;
jpeg_component_info * compptr;
/* Process restart marker if needed; may have to suspend */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! process_restart(cinfo))
return FALSE;
}
/* If we've run out of data, just leave the MCU set to zeroes.
* This way, we return uniform gray for the remainder of the segment.
*/
if (! entropy->insufficient_data) {
/* Load up working state */
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
ASSIGN_STATE(state, entropy->saved);
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->data_units_in_MCU; blkn++) {
block = MCU_data[blkn];
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
tbl = entropy->derived_tbls[compptr->dc_tbl_no];
/* Decode a single block's worth of coefficients */
/* Section F.2.2.1: decode the DC coefficient difference */
HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
if (s) {
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
}
/* Convert DC difference to actual value, update last_dc_val */
s += state.last_dc_val[ci];
state.last_dc_val[ci] = s;
/* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
(*block)[0] = (JCOEF) (s << Al);
}
/* Completed MCU, so update state */
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
ASSIGN_STATE(entropy->saved, state);
}
示例2: decode_mcu
METHODDEF boolean
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
register int s, k, r;
int blkn, ci;
JBLOCKROW block;
working_state state;
D_DERIVED_TBL * dctbl;
D_DERIVED_TBL * actbl;
jpeg_component_info * compptr;
/* Process restart marker if needed; may have to suspend */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! process_restart(cinfo))
return FALSE;
}
/* Load up working state */
state.unread_marker = cinfo->unread_marker;
state.next_input_byte = cinfo->src->next_input_byte;
state.bytes_in_buffer = cinfo->src->bytes_in_buffer;
ASSIGN_STATE(state.cur, entropy->saved);
state.cinfo = cinfo;
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = MCU_data[blkn];
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no];
actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no];
/* Decode a single block's worth of coefficients */
/* Section F.2.2.1: decode the DC coefficient difference */
huff_DECODE(s, state, dctbl, label1);
if (s) {
check_bit_buffer(state, s, return FALSE);
r = get_bits(state, s);
s = huff_EXTEND(r, s);
}
/* Shortcut if component's values are not interesting */
if (! compptr->component_needed)
goto skip_ACs;
/* Convert DC difference to actual value, update last_dc_val */
s += state.cur.last_dc_val[ci];
state.cur.last_dc_val[ci] = s;
/* Output the DC coefficient (assumes ZAG[0] = 0) */
(*block)[0] = (JCOEF) s;
/* Do we need to decode the AC coefficients for this component? */
if (compptr->DCT_scaled_size > 1) {
/* Section F.2.2.2: decode the AC coefficients */
/* Since zeroes are skipped, output area must be cleared beforehand */
for (k = 1; k < DCTSIZE2; k++) {
huff_DECODE(s, state, actbl, label2);
r = s >> 4;
s &= 15;
if (s) {
k += r;
check_bit_buffer(state, s, return FALSE);
r = get_bits(state, s);
s = huff_EXTEND(r, s);
/* Output coefficient in natural (dezigzagged) order */
(*block)[ZAG[k]] = (JCOEF) s;
} else {
if (r != 15)
break;
k += 15;
}
}
} else {
示例3: decode_mcu_slow
decode_mcu_slow (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
BITREAD_STATE_VARS;
int blkn;
savable_state state;
/* Outer loop handles each block in the MCU */
/* Load up working state */
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
ASSIGN_STATE(state, entropy->saved);
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
register int s, k, r;
/* Decode a single block's worth of coefficients */
/* Section F.2.2.1: decode the DC coefficient difference */
HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
if (s) {
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
}
if (entropy->dc_needed[blkn]) {
/* Convert DC difference to actual value, update last_dc_val */
int ci = cinfo->MCU_membership[blkn];
s += state.last_dc_val[ci];
state.last_dc_val[ci] = s;
if (block) {
/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
(*block)[0] = (JCOEF) s;
}
}
if (entropy->ac_needed[blkn] && block) {
/* Section F.2.2.2: decode the AC coefficients */
/* Since zeroes are skipped, output area must be cleared beforehand */
for (k = 1; k < DCTSIZE2; k++) {
HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
r = s >> 4;
s &= 15;
if (s) {
k += r;
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
/* Output coefficient in natural (dezigzagged) order.
* Note: the extra entries in jpeg_natural_order[] will save us
* if k >= DCTSIZE2, which could happen if the data is corrupted.
*/
(*block)[jpeg_natural_order[k]] = (JCOEF) s;
} else {
if (r != 15)
break;
k += 15;
}
}
} else {
/* Section F.2.2.2: decode the AC coefficients */
/* In this path we just discard the values */
for (k = 1; k < DCTSIZE2; k++) {
示例4: decode_mcu
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
register int s, k, r;
int blkn, ci;
JBLOCKROW block;
BITREAD_STATE_VARS;
savable_state state;
d_derived_tbl * dctbl;
d_derived_tbl * actbl;
jpeg_component_info * compptr;
/* Process restart marker if needed; may have to suspend */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! process_restart(cinfo))
return FALSE;
}
/* Load up working state */
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
ASSIGN_STATE(state, entropy->saved);
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = MCU_data[blkn];
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no];
actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no];
/* Decode a single block's worth of coefficients */
/* Section F.2.2.1: decode the DC coefficient difference */
HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
if (s) {
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
}
/* Shortcut if component's values are not interesting */
if (! compptr->component_needed)
goto skip_ACs;
/* Convert DC difference to actual value, update last_dc_val */
s += state.last_dc_val[ci];
state.last_dc_val[ci] = s;
/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
(*block)[0] = (JCOEF) s;
/* Do we need to decode the AC coefficients for this component? */
if (compptr->DCT_scaled_size > 1) {
/* Section F.2.2.2: decode the AC coefficients */
/* Since zeroes are skipped, output area must be cleared beforehand */
for (k = 1; k < DCTSIZE2; k++) {
HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
r = s >> 4;
s &= 15;
if (s) {
k += r;
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
/* Output coefficient in natural (dezigzagged) order.
* Note: the extra entries in jpeg_natural_order[] will save us
* if k >= DCTSIZE2, which could happen if the data is corrupted.
*/
(*block)[jpeg_natural_order[k]] = (JCOEF) s;
} else {
if (r != 15)
break;
k += 15;
}
}
} else {
示例5: decode_mcu
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec;
shuff_entropy_ptr entropy = (shuff_entropy_ptr) lossyd->entropy_private;
int blkn;
BITREAD_STATE_VARS;
savable_state state;
/* Process restart marker if needed; may have to suspend */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! process_restart(cinfo))
return FALSE;
}
/* If we've run out of data, just leave the MCU set to zeroes.
* This way, we return uniform gray for the remainder of the segment.
*/
if (! entropy->insufficient_data) {
/* Load up working state */
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
ASSIGN_STATE(state, entropy->saved);
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->data_units_in_MCU; blkn++) {
JBLOCKROW block = MCU_data[blkn];
d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
register int s, k, r;
/* Decode a single block's worth of coefficients */
/* Section F.2.2.1: decode the DC coefficient difference */
HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
if (s) {
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
}
if (entropy->dc_needed[blkn]) {
/* Convert DC difference to actual value, update last_dc_val */
int ci = cinfo->MCU_membership[blkn];
s += state.last_dc_val[ci];
state.last_dc_val[ci] = s;
/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
(*block)[0] = (JCOEF) s;
}
if (entropy->ac_needed[blkn]) {
/* Section F.2.2.2: decode the AC coefficients */
/* Since zeroes are skipped, output area must be cleared beforehand */
for (k = 1; k < DCTSIZE2; k++) {
HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
r = s >> 4;
s &= 15;
if (s) {
k += r;
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
/* Output coefficient in natural (dezigzagged) order.
* Note: the extra entries in jpeg_natural_order[] will save us
* if k >= DCTSIZE2, which could happen if the data is corrupted.
*/
(*block)[jpeg_natural_order[k]] = (JCOEF) s;
} else {
if (r != 15)
break;
k += 15;
}
}
} else {
/* Section F.2.2.2: decode the AC coefficients */
/* In this path we just discard the values */
for (k = 1; k < DCTSIZE2; k++) {
示例6: decode_mcu
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
__boundcheck_metadata_store((void *)(&entropy),(void *)((size_t)(&entropy)+sizeof(entropy)*8-1));
register int s, k, r;
int blkn;
__boundcheck_metadata_store((void *)(&blkn),(void *)((size_t)(&blkn)+sizeof(blkn)*8-1));
int ci;
__boundcheck_metadata_store((void *)(&ci),(void *)((size_t)(&ci)+sizeof(ci)*8-1));
JBLOCKROW block;
__boundcheck_metadata_store((void *)(&block),(void *)((size_t)(&block)+sizeof(block)*8-1));
BITREAD_STATE_VARS;
__boundcheck_metadata_store((void *)(&br_state),(void *)((size_t)(&br_state)+sizeof(br_state)*8-1));
savable_state state;
__boundcheck_metadata_store((void *)(&state),(void *)((size_t)(&state)+sizeof(state)*8-1));
d_derived_tbl * dctbl;
__boundcheck_metadata_store((void *)(&dctbl),(void *)((size_t)(&dctbl)+sizeof(dctbl)*8-1));
d_derived_tbl * actbl;
__boundcheck_metadata_store((void *)(&actbl),(void *)((size_t)(&actbl)+sizeof(actbl)*8-1));
jpeg_component_info * compptr;
__boundcheck_metadata_store((void *)(&compptr),(void *)((size_t)(&compptr)+sizeof(compptr)*8-1));
/* Process restart marker if needed; may have to suspend */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! process_restart(cinfo))
return FALSE;
}
/* Load up working state */
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
ASSIGN_STATE(state, entropy->saved);
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = (*(JBLOCKROW *)(__boundcheck_ptr_reference(463,13,"decode_mcu",(void *)(&MCU_data[0]),(void *)(&MCU_data[blkn]))));
ci = cinfo->MCU_membership[_RV_insert_check(0,10,464,10,"decode_mcu",blkn)];
compptr = cinfo->cur_comp_info[_RV_insert_check(0,4,465,15,"decode_mcu",ci)];
dctbl = entropy->dc_derived_tbls[_RV_insert_check(0,4,466,13,"decode_mcu",compptr->dc_tbl_no)];
actbl = entropy->ac_derived_tbls[_RV_insert_check(0,4,467,13,"decode_mcu",compptr->ac_tbl_no)];
/* Decode a single block's worth of coefficients */
/* Section F.2.2.1: decode the DC coefficient difference */
HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
if (s) {
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
}
/* Shortcut if component's values are not interesting */
if (! compptr->component_needed)
goto skip_ACs;
/* Convert DC difference to actual value, update last_dc_val */
s += state.last_dc_val[_RV_insert_check(0,4,484,10,"decode_mcu",ci)];
state.last_dc_val[_RV_insert_check(0,4,485,5,"decode_mcu",ci)] = s;
/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
(*(JBLOCKROW)(__boundcheck_ptr_reference(487,7,"decode_mcu",(void *)(block),(void *)(block))))[0] = (JCOEF) s;
/* Do we need to decode the AC coefficients for this component? */
if (compptr->DCT_scaled_size > 1) {
/* Section F.2.2.2: decode the AC coefficients */
/* Since zeroes are skipped, output area must be cleared beforehand */
for (k = 1; k < DCTSIZE2; k++) {
HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
r = s >> 4;
s &= 15;
if (s) {
k += r;
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
/* Output coefficient in natural (dezigzagged) order.
* Note: the extra entries in jpeg_natural_order[] will save us
* if k >= DCTSIZE2, which could happen if the data is corrupted.
*/
(*(JBLOCKROW)(__boundcheck_ptr_reference(509,6,"decode_mcu",(void *)(block),(void *)(block))))[(*(const int *)(__boundcheck_ptr_reference(509,13,"decode_mcu",(void *)(&jpeg_natural_order[0]),(void *)(&jpeg_natural_order[k]))))] = (JCOEF) s;
} else {
if (r != 15)
break;
k += 15;
}
}
} else {
示例7: decode_mcu_DC_first
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
__boundcheck_metadata_store((void *)(&entropy),(void *)((size_t)(&entropy)+sizeof(entropy)*8-1));
int Al = cinfo->Al;
__boundcheck_metadata_store((void *)(&Al),(void *)((size_t)(&Al)+sizeof(Al)*8-1));
register int s, r;
int blkn;
__boundcheck_metadata_store((void *)(&blkn),(void *)((size_t)(&blkn)+sizeof(blkn)*8-1));
int ci;
__boundcheck_metadata_store((void *)(&ci),(void *)((size_t)(&ci)+sizeof(ci)*8-1));
JBLOCKROW block;
__boundcheck_metadata_store((void *)(&block),(void *)((size_t)(&block)+sizeof(block)*8-1));
BITREAD_STATE_VARS;
__boundcheck_metadata_store((void *)(&br_state),(void *)((size_t)(&br_state)+sizeof(br_state)*8-1));
savable_state state;
__boundcheck_metadata_store((void *)(&state),(void *)((size_t)(&state)+sizeof(state)*8-1));
d_derived_tbl * tbl;
__boundcheck_metadata_store((void *)(&tbl),(void *)((size_t)(&tbl)+sizeof(tbl)*8-1));
jpeg_component_info * compptr;
__boundcheck_metadata_store((void *)(&compptr),(void *)((size_t)(&compptr)+sizeof(compptr)*8-1));
/* Process restart marker if needed; may have to suspend */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! process_restart(cinfo))
return FALSE;
}
/* Load up working state */
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
ASSIGN_STATE(state, entropy->saved);
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = (*(JBLOCKROW *)(__boundcheck_ptr_reference(307,13,"decode_mcu_DC_first",(void *)(&MCU_data[0]),(void *)(&MCU_data[blkn]))));
ci = cinfo->MCU_membership[_RV_insert_check(0,10,308,10,"decode_mcu_DC_first",blkn)];
compptr = cinfo->cur_comp_info[_RV_insert_check(0,4,309,15,"decode_mcu_DC_first",ci)];
tbl = entropy->derived_tbls[_RV_insert_check(0,4,310,11,"decode_mcu_DC_first",compptr->dc_tbl_no)];
/* Decode a single block's worth of coefficients */
/* Section F.2.2.1: decode the DC coefficient difference */
HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
if (s) {
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
}
/* Convert DC difference to actual value, update last_dc_val */
s += state.last_dc_val[_RV_insert_check(0,4,323,10,"decode_mcu_DC_first",ci)];
state.last_dc_val[_RV_insert_check(0,4,324,5,"decode_mcu_DC_first",ci)] = s;
/* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
(*(JBLOCKROW)(__boundcheck_ptr_reference(326,7,"decode_mcu_DC_first",(void *)(block),(void *)(block))))[0] = (JCOEF) (s << Al);
}
/* Completed MCU, so update state */
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
ASSIGN_STATE(entropy->saved, state);
/* Account for restart interval (no-op if not using restarts) */
entropy->restarts_to_go--;
return TRUE;
}
示例8: decode_mcu_DC_first
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
int Al = cinfo->Al;
int blkn;
BITREAD_STATE_VARS;
savable_state state;
/* Process restart marker if needed; may have to suspend */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! process_restart(cinfo))
return FALSE;
}
/* If we've run out of data, just leave the MCU set to zeroes.
* This way, we return uniform gray for the remainder of the segment.
*/
if (! entropy->pub.insufficient_data) {
/* Load up working state */
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
ASSIGN_STATE(state, entropy->saved);
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
JBLOCKROW block = MCU_data[blkn];
int ci = cinfo->MCU_membership[blkn];
d_derived_tbl * tbl = entropy->dc_derived_tbls[ci];
register int s;
/* Decode a single block's worth of coefficients */
/* Section F.2.2.1: decode the DC coefficient difference */
{ /* HUFFX_DECODE */
register int nb, look, t;
if (bits_left < HUFFX_LOOKAHEAD) {
register const JOCTET * next_input_byte = br_state.next_input_byte;
register size_t bytes_in_buffer = br_state.bytes_in_buffer;
if (cinfo->unread_marker == 0) {
while (bits_left < MIN_GET_BITS) {
register int c;
if (bytes_in_buffer == 0 ||
(c = GETJOCTET(*next_input_byte)) == 0xFF) {
goto label11; }
bytes_in_buffer--; next_input_byte++;
get_buffer = (get_buffer << 8) | c;
bits_left += 8;
}
br_state.next_input_byte = next_input_byte;
br_state.bytes_in_buffer = bytes_in_buffer;
} else {
label11:
br_state.next_input_byte = next_input_byte;
br_state.bytes_in_buffer = bytes_in_buffer;
if (! jpeg_fill_bit_buffer(&br_state,get_buffer,bits_left, 0)) {
return FALSE; }
get_buffer = br_state.get_buffer; bits_left = br_state.bits_left;
if (bits_left < HUFFX_LOOKAHEAD) {
nb = 1; goto label1;
}
}
}
look = PEEK_BITS(HUFFX_LOOKAHEAD);
if ((nb = tbl->lookx_nbits[look]) != 0) {
s = tbl->lookx_val[look];
if (nb <= HUFFX_LOOKAHEAD) {
DROP_BITS(nb);
} else {
DROP_BITS(HUFFX_LOOKAHEAD);
nb -= HUFFX_LOOKAHEAD;
CHECK_BIT_BUFFER(br_state, nb, return FALSE);
s += GET_BITS(nb);
}
} else {
nb = HUFFX_LOOKAHEAD;
label1:
if ((s=jpeg_huff_decode(&br_state,get_buffer,bits_left,tbl,nb))
< 0) { return FALSE; }
get_buffer = br_state.get_buffer; bits_left = br_state.bits_left;
if (s) {
CHECK_BIT_BUFFER(br_state, s, return FALSE);
t = GET_BITS(s);
s = HUFF_EXTEND(t, s);
}
}
}