當前位置: 首頁>>編程示例 >>用法及示例精選 >>正文


Python Sympy stats.GeneralizedMultivariateLogGamma()用法及代碼示例

借助sympy.stats.GeneralizedMultivariateLogGamma()方法,我們可以獲得連續的聯合隨機變量,它代表了廣義多元對數伽馬分布。

用法: GeneralizedMultivariateLogGamma(syms, delta, v, lamda, mu)
參數:
1) Syms - list of symbols
2) Delta - a constant in range [0, 1]
3) V - positive real number
4) Lambda - a list of positive reals
5) mu - a list of positive real numbers.
返回:Return the continuous joint random variable.

範例1:
在這個例子中,我們可以通過使用sympy.stats.GeneralizedMultivariateLogGamma()該方法可以得到代表廣義多元對數伽馬分布的連續聯合隨機變量。

# Import sympy and GeneralizedMultivariateLogGamma 
from sympy.stats import density 
from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGamma 
from sympy.stats.joint_rv import marginal_distribution 
from sympy import symbols, S 
  
v = 1
l, mu = [1, 1, 1], [1, 1, 1] 
d = S.Half 
y = symbols('y_1:4', positive = True) 
  
# Using sympy.stats.GeneralizedMultivariateLogGamma() method 
Gd = GeneralizedMultivariateLogGamma('G', d, v, l, mu) 
gfg = density(Gd)(y[0], y[1], y[2]) 
  
pprint(gfg)

輸出:

  oo                                                      
_____                                                     
\    `                                                    
 \                                       y_1    y_2    y_3
  \     -n  (n + 1)*(y_1 + y_2 + y_3) - e    - e    - e   
   \   2  *e                                              
   /   ---------------------------------------------------
  /                            3                          
 /                        Gamma (n + 1)                   
/____,                                                    
n = 0                                                     
----------------------------------------------------------
                            2                             

範例2:

# Import sympy and GeneralizedMultivariateLogGamma 
from sympy.stats import density 
from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGamma 
from sympy.stats.joint_rv import marginal_distribution 
from sympy import symbols, S 
  
v = 1
l, mu = [1, 2, 3], [2, 5, 1] 
d = S.One 
y = symbols('y_1:4', positive = True) 
  
# Using sympy.stats.GeneralizedMultivariateLogGamma() method 
Gd = GeneralizedMultivariateLogGamma('G', d, v, l, mu) 
gfg = density(Gd)(y[0], y[1], y[2]) 
  
pprint(gfg)

輸出:

   oo                                                                        
______                                                                       
\     `                                                                      
 \                                                               5*y_2    y_3
  \                                                     2*y_1   e        e   
   \                   (n + 1)*(2*y_1 + 5*y_2 + y_3) - e      - ------ - ----
    \       n  -n - 1                                             2       3  
    /   10*0 *6      *e                                                      
   /    ---------------------------------------------------------------------
  /                                      3                                   
 /                                  Gamma (n + 1)                            
/_____,                                                                      
 n = 0                                        



相關用法


注:本文由純淨天空篩選整理自Jitender_1998大神的英文原創作品 Sympy stats.GeneralizedMultivariateLogGamma() in Python。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。