計算 y_true
和 y_pred
之間的分類鉸鏈損失。
用法
tf.keras.losses.categorical_hinge(
y_true, y_pred
)
參數
-
y_true
基本事實值。y_true
值應為{-1, +1}
或{0, 1}
(即 one-hot-encoded 張量)。 -
y_pred
預測值。
返回
- 分類鉸鏈損失值。
loss = maximum(neg - pos + 1, 0)
其中neg=maximum((1-y_true)*y_pred) and pos=sum(y_true*y_pred)
單機使用:
y_true = np.random.randint(0, 3, size=(2,))
y_true = tf.keras.utils.to_categorical(y_true, num_classes=3)
y_pred = np.random.random(size=(2, 3))
loss = tf.keras.losses.categorical_hinge(y_true, y_pred)
assert loss.shape == (2,)
pos = np.sum(y_true * y_pred, axis=-1)
neg = np.amax((1. - y_true) * y_pred, axis=-1)
assert np.array_equal(loss.numpy(), np.maximum(0., neg - pos + 1.))
相關用法
- Python tf.keras.losses.cosine_similarity用法及代碼示例
- Python tf.keras.losses.MeanAbsoluteError用法及代碼示例
- Python tf.keras.losses.huber用法及代碼示例
- Python tf.keras.losses.log_cosh用法及代碼示例
- Python tf.keras.losses.BinaryCrossentropy用法及代碼示例
- Python tf.keras.losses.BinaryFocalCrossentropy用法及代碼示例
- Python tf.keras.losses.Huber用法及代碼示例
- Python tf.keras.losses.LogCosh用法及代碼示例
- Python tf.keras.losses.MeanAbsolutePercentageError用法及代碼示例
- Python tf.keras.losses.get用法及代碼示例
- Python tf.keras.losses.CosineSimilarity用法及代碼示例
- Python tf.keras.losses.Hinge用法及代碼示例
- Python tf.keras.losses.SparseCategoricalCrossentropy用法及代碼示例
- Python tf.keras.losses.KLDivergence用法及代碼示例
- Python tf.keras.losses.MeanSquaredLogarithmicError用法及代碼示例
- Python tf.keras.losses.CategoricalCrossentropy用法及代碼示例
- Python tf.keras.losses.MeanSquaredError用法及代碼示例
- Python tf.keras.losses.SquaredHinge用法及代碼示例
- Python tf.keras.losses.Poisson用法及代碼示例
- Python tf.keras.losses.CategoricalHinge用法及代碼示例
注:本文由純淨天空篩選整理自tensorflow.org大神的英文原創作品 tf.keras.losses.categorical_hinge。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。