TensorFlow Linear 和 DNN 的估計器加入回歸模型。
警告:不建議將估算器用於新代碼。估算器運行tf.compat.v1.Session-style 代碼更難正確編寫,並且可能出現意外行為,尤其是與 TF 2 代碼結合使用時。估算器確實屬於我們的兼容性保證,但不會收到除安全漏洞以外的任何修複。見遷移指南詳情。
用法
tf.estimator.DNNLinearCombinedRegressor(
model_dir=None, linear_feature_columns=None, linear_optimizer='Ftrl',
dnn_feature_columns=None, dnn_optimizer='Adagrad',
dnn_hidden_units=None, dnn_activation_fn=tf.nn.relu, dnn_dropout=None,
label_dimension=1, weight_column=None, config=None, warm_start_from=None,
loss_reduction=tf.losses.Reduction.SUM_OVER_BATCH_SIZE, batch_norm=False,
linear_sparse_combiner='sum'
)
參數
-
model_dir
保存模型參數、圖形等的目錄。這也可用於將檢查點從目錄加載到估計器中,以繼續訓練先前保存的模型。 -
linear_feature_columns
一個包含模型線性部分使用的所有特征列的迭代。集合中的所有項目都必須是派生自FeatureColumn
的類的實例。 -
linear_optimizer
tf.keras.optimizers.*
的一個實例,用於將漸變應用於模型的線性部分。也可以是字符串('Adagrad'、'Adam'、'Ftrl'、'RMSProp'、'SGD' 之一)或可調用的。默認為 FTRL 優化器。 -
dnn_feature_columns
一個包含模型深層部分使用的所有特征列的迭代。集合中的所有項目都必須是派生自FeatureColumn
的類的實例。 -
dnn_optimizer
tf.keras.optimizers.*
的一個實例,用於將漸變應用到模型的深層。也可以是字符串('Adagrad'、'Adam'、'Ftrl'、'RMSProp'、'SGD' 之一)或可調用的。默認為 Adagrad 優化器。 -
dnn_hidden_units
每層隱藏單元的列表。所有層都是完全連接的。 -
dnn_activation_fn
應用於每一層的激活函數。如果沒有,將使用tf.nn.relu
。 -
dnn_dropout
當不是 None 時,我們將丟棄給定坐標的概率。 -
label_dimension
每個示例的回歸目標數。這是標簽和 logitsTensor
對象的最後一個維度的大小(通常,這些對象的形狀為[batch_size, label_dimension]
)。 -
weight_column
由tf.feature_column.numeric_column
創建的字符串或NumericColumn
定義表示權重的特征列。它用於在訓練期間減輕重量或增加示例。它將乘以示例的損失。如果它是一個字符串,它被用作從features
中獲取權重張量的鍵。如果是_NumericColumn
,則通過鍵weight_column.key
獲取原始張量,然後對其應用 weight_column.normalizer_fn 以獲得權重張量。 -
config
RunConfig 對象來配置運行時設置。 -
warm_start_from
檢查點的字符串文件路徑以進行熱啟動,或WarmStartSettings
對象以完全配置熱啟動。如果提供了字符串文件路徑而不是WarmStartSettings
,則所有權重都是熱啟動的,並且假定詞匯表和張量名稱未更改。 -
loss_reduction
tf.losses.Reduction
之一,除了NONE
。說明如何減少批量訓練損失。默認為SUM_OVER_BATCH_SIZE
。 -
batch_norm
是否在每個隱藏層之後使用批量歸一化。 -
linear_sparse_combiner
如果分類列是多價的,則指定如何減少線性模型的字符串。 "mean"、"sqrtn" 和 "sum" 之一——這些是進行 example-level 歸一化的有效不同方法,這對於 bag-of-words 函數很有用。有關詳細信息,請參閱tf.feature_column.linear_model
。
拋出
-
ValueError
如果 linear_feature_columns 和 dnn_features_columns 同時為空。
屬性
-
config
-
export_savedmodel
-
model_dir
-
model_fn
返回綁定到self.params
的model_fn
。 -
params
注意:此估計器也稱為wide-n-deep。
例子:
numeric_feature = numeric_column(...)
categorical_column_a = categorical_column_with_hash_bucket(...)
categorical_column_b = categorical_column_with_hash_bucket(...)
categorical_feature_a_x_categorical_feature_b = crossed_column(...)
categorical_feature_a_emb = embedding_column(
categorical_column=categorical_feature_a, ...)
categorical_feature_b_emb = embedding_column(
categorical_column=categorical_feature_b, ...)
estimator = tf.estimator.DNNLinearCombinedRegressor(
# wide settings
linear_feature_columns=[categorical_feature_a_x_categorical_feature_b],
linear_optimizer=tf.keras.optimizers.Ftrl(...),
# deep settings
dnn_feature_columns=[
categorical_feature_a_emb, categorical_feature_b_emb,
numeric_feature],
dnn_hidden_units=[1000, 500, 100],
dnn_optimizer=tf.keras.optimizers.Adagrad(...),
# warm-start settings
warm_start_from="/path/to/checkpoint/dir")
# To apply L1 and L2 regularization, you can set dnn_optimizer to:
tf.compat.v1.train.ProximalAdagradOptimizer(
learning_rate=0.1,
l1_regularization_strength=0.001,
l2_regularization_strength=0.001)
# To apply learning rate decay, you can set dnn_optimizer to a callable:
lambda:tf.keras.optimizers.Adam(
learning_rate=tf.compat.v1.train.exponential_decay(
learning_rate=0.1,
global_step=tf.compat.v1.train.get_global_step(),
decay_steps=10000,
decay_rate=0.96)
# It is the same for linear_optimizer.
# Input builders
def input_fn_train:
# Returns tf.data.Dataset of (x, y) tuple where y represents label's class
# index.
pass
def input_fn_eval:
# Returns tf.data.Dataset of (x, y) tuple where y represents label's class
# index.
pass
def input_fn_predict:
# Returns tf.data.Dataset of (x, None) tuple.
pass
estimator.train(input_fn=input_fn_train, steps=100)
metrics = estimator.evaluate(input_fn=input_fn_eval, steps=10)
predictions = estimator.predict(input_fn=input_fn_predict)
train
和 evaluate
的輸入應具有以下特征,否則會出現 KeyError
:
- 對於每個
column
在dnn_feature_columns
+linear_feature_columns
:- 如果
column
是CategoricalColumn
,則具有key=column.name
的特征,其value
是SparseTensor
。 - 如果
column
是WeightedCategoricalColumn
,則有兩個特征:第一個具有key
id 列名,第二個具有key
權重列名。兩個函數的value
必須是SparseTensor
。 - 如果
column
是DenseColumn
,則具有key=column.name
的特征,其value
是Tensor
。
- 如果
損失是使用均方誤差計算的。
相關用法
- Python tf.estimator.DNNLinearCombinedEstimator用法及代碼示例
- Python tf.estimator.DNNLinearCombinedClassifier用法及代碼示例
- Python tf.estimator.DNNClassifier用法及代碼示例
- Python tf.estimator.DNNEstimator用法及代碼示例
- Python tf.estimator.DNNRegressor用法及代碼示例
- Python tf.estimator.TrainSpec用法及代碼示例
- Python tf.estimator.LogisticRegressionHead用法及代碼示例
- Python tf.estimator.MultiHead用法及代碼示例
- Python tf.estimator.PoissonRegressionHead用法及代碼示例
- Python tf.estimator.WarmStartSettings用法及代碼示例
- Python tf.estimator.experimental.stop_if_lower_hook用法及代碼示例
- Python tf.estimator.RunConfig用法及代碼示例
- Python tf.estimator.MultiLabelHead用法及代碼示例
- Python tf.estimator.experimental.stop_if_no_increase_hook用法及代碼示例
- Python tf.estimator.BaselineEstimator用法及代碼示例
- Python tf.estimator.Estimator用法及代碼示例
- Python tf.estimator.experimental.LinearSDCA用法及代碼示例
- Python tf.estimator.experimental.RNNClassifier用法及代碼示例
- Python tf.estimator.experimental.make_early_stopping_hook用法及代碼示例
- Python tf.estimator.LinearRegressor用法及代碼示例
注:本文由純淨天空篩選整理自tensorflow.org大神的英文原創作品 tf.estimator.DNNLinearCombinedRegressor。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。