談到統計函數,data-set的中位數是魯棒集中趨勢的度量,該趨勢受數據中異常值的影響較小。如前所示,使用median(),median_high(),median_low()的未分組data-set的中位數起作用。
Python還提供了計算分組數據和連續數據函數的中位數的選項,這是此健壯且方便的語言的最佳組成部分。統計模塊下的median_grouped()函數有助於從一組連續數據中計算中值。
假定數據被分組為寬度間隔的間隔。數組中的每個數據點都是包含真實值的間隔的中點。假設在該間隔內的真實值均勻分布,則通過在中間間隔(包含中間值的間隔)內進行插值來計算中間值:
median = L + interval * (N / 2 - CF) / F
L = lower limit of the median interval
N = total number of data points
CF = number of data points below the median interval
F = number of data points in the median interval
用法: median_grouped( [data-set], interval)
Parameters:
[data-set]:列表或元組,或帶有一組數字的迭代。
interval (默認為1):確定分組數據的寬度和更改的寬度。它還將更改計算出的中位數的插值。
Returntype:
返回分組的連續數據的中位數,計算為50th百分百。
Exceptions:
StatisticsError當iterable通過為空或list為null時引發。
代碼1:
# Python3 code to demonstrate median_grouped()
# importing median_grouped from
# the statistics module
from statistics import median_grouped
# creating an simple data-set
data1 = [15, 20, 25, 30, 35]
# printing median_grouped for the set
print("Grouped Median of the median is %s"
%(median_grouped(data1)))
輸出:
Grouped Median of the median is 25.0
代碼2:median_grouped處理各種變化的數據
# Python code to demonsrate the
# working of median_grouped()
# importing statistics module
from statistics import median_grouped
# tuple of a set of positive integers
set1 = [2, 5, 3, 4, 8, 9]
# tuple of a set of negative integers
set2 = [-6, -2, -9, -12]
# tuple of a set of positive
# and negative integers
set3 = [2, 4, 8, 9, -2, -3, -5, -6]
# Printing grouped median for
# the given set of data
print("Grouped Median of set 1 is % s" % (median_grouped(set1)))
print("Grouped Median of set 2 is % s" % (median_grouped(set2)))
print("Grouped Median of set 3 is % s" % (median_grouped(set3)))
輸出:
Grouped Median of set 1 is 4.5 Grouped Median of set 2 is -6.5 Grouped Median of set 3 is 1.5
代碼3:間隔工作
# Python code to demonsrate the working of
# interval in median_grouped() function
# importing statistics module
from statistics import median_grouped
# creating a tuple of simple data
set1 = (10, 12, 13, 12, 13, 15)
# Printing median_grouped()
# keeping default interval at 1
print("Grouped Median for Interval set as "\
"(default) 1 is % s" %(median_grouped(set1)))
# For interval value of 2
print("Grouped Median for Interval set as "\
"2 is % s" %(median_grouped(set1, interval = 2)))
# Now for interval value of 5
print("Grouped Median for Interval set as "\
"5 is % s" %(median_grouped(set1, interval = 5)))
輸出:
Grouped Median for Interval set as (default) 1 is 12.5 Grouped Median for Interval set as 2 is 12.0 Grouped Median for Interval set as 5 is 10.5 Grouped Median for Interval set as 10 is 8.0
注意:觀察到隨著間隔值增加,中間值減小的模式。
代碼4:展示StatisticsError
# Python code to demonstrate StatisticsError
# importing the statistics module
import statistics
# creating an empty dataset
list1 = []
# Will raise StatisticsError
print(statistics.median_grouped(list1))
輸出:
Traceback (most recent call last): File "/home/0990a4a3f5206c7cd12a596cf82a1587.py", line 10, in print(statistics.median_grouped(list1)) File "/usr/lib/python3.5/statistics.py", line 431, in median_grouped raise StatisticsError("no median for empty data") statistics.StatisticsError:no median for empty data
應用範圍:
分組中位數與中位數具有相同的應用。它通常用於涉及大量數據(如銀行和金融)的計算中。它是統計的重要組成部分,它是數據計算中最強大的工具。
相關用法
- Python statistics median_high()用法及代碼示例
- Python statistics harmonic_mean()用法及代碼示例
- Python - statistics stdev()用法及代碼示例
- Python statistics pvariance()用法及代碼示例
- Python statistics variance()用法及代碼示例
- Python statistics median()用法及代碼示例
- Python statistics mean()用法及代碼示例
- Python statistics median_low()用法及代碼示例
注:本文由純淨天空篩選整理自retr0大神的英文原創作品 Python statistics | median_grouped()。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。