本文簡要介紹
pyspark.ml.classification.RandomForestClassifier
的用法。用法:
class pyspark.ml.classification.RandomForestClassifier(*, featuresCol='features', labelCol='label', predictionCol='prediction', probabilityCol='probability', rawPredictionCol='rawPrediction', maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity='gini', numTrees=20, featureSubsetStrategy='auto', seed=None, subsamplingRate=1.0, leafCol='', minWeightFractionPerNode=0.0, weightCol=None, bootstrap=True)
Random Forest 學習分類算法。它支持二進製和多類標簽,以及連續和分類特征。
1.4.0 版中的新函數。
例子:
>>> import numpy >>> from numpy import allclose >>> from pyspark.ml.linalg import Vectors >>> from pyspark.ml.feature import StringIndexer >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed") >>> si_model = stringIndexer.fit(df) >>> td = si_model.transform(df) >>> rf = RandomForestClassifier(numTrees=3, maxDepth=2, labelCol="indexed", seed=42, ... leafCol="leafId") >>> rf.getMinWeightFractionPerNode() 0.0 >>> model = rf.fit(td) >>> model.getLabelCol() 'indexed' >>> model.setFeaturesCol("features") RandomForestClassificationModel... >>> model.setRawPredictionCol("newRawPrediction") RandomForestClassificationModel... >>> model.getBootstrap() True >>> model.getRawPredictionCol() 'newRawPrediction' >>> model.featureImportances SparseVector(1, {0: 1.0}) >>> allclose(model.treeWeights, [1.0, 1.0, 1.0]) True >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> model.predict(test0.head().features) 0.0 >>> model.predictRaw(test0.head().features) DenseVector([2.0, 0.0]) >>> model.predictProbability(test0.head().features) DenseVector([1.0, 0.0]) >>> result = model.transform(test0).head() >>> result.prediction 0.0 >>> numpy.argmax(result.probability) 0 >>> numpy.argmax(result.newRawPrediction) 0 >>> result.leafId DenseVector([0.0, 0.0, 0.0]) >>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> model.transform(test1).head().prediction 1.0 >>> model.trees [DecisionTreeClassificationModel...depth=..., DecisionTreeClassificationModel...] >>> rfc_path = temp_path + "/rfc" >>> rf.save(rfc_path) >>> rf2 = RandomForestClassifier.load(rfc_path) >>> rf2.getNumTrees() 3 >>> model_path = temp_path + "/rfc_model" >>> model.save(model_path) >>> model2 = RandomForestClassificationModel.load(model_path) >>> model.featureImportances == model2.featureImportances True >>> model.transform(test0).take(1) == model2.transform(test0).take(1) True
相關用法
- Python pyspark RandomForest.trainRegressor用法及代碼示例
- Python pyspark RandomForestRegressor用法及代碼示例
- Python pyspark RandomForest.trainClassifier用法及代碼示例
- Python pyspark RandomRDDs.uniformRDD用法及代碼示例
- Python pyspark RandomRDDs.exponentialRDD用法及代碼示例
- Python pyspark RandomRDDs.gammaRDD用法及代碼示例
- Python pyspark RandomRDDs.normalVectorRDD用法及代碼示例
- Python pyspark RandomRDDs.uniformVectorRDD用法及代碼示例
- Python pyspark RandomRDDs.exponentialVectorRDD用法及代碼示例
- Python pyspark RandomRDDs.poissonVectorRDD用法及代碼示例
- Python pyspark RandomRDDs.poissonRDD用法及代碼示例
- Python pyspark RandomRDDs.gammaVectorRDD用法及代碼示例
- Python pyspark RandomRDDs.logNormalVectorRDD用法及代碼示例
- Python pyspark RandomRDDs.normalRDD用法及代碼示例
- Python pyspark RandomRDDs.logNormalRDD用法及代碼示例
- Python pyspark RankingEvaluator用法及代碼示例
- Python pyspark RankingMetrics用法及代碼示例
- Python pyspark Rating用法及代碼示例
- Python pyspark RDD.saveAsTextFile用法及代碼示例
- Python pyspark RDD.keyBy用法及代碼示例
- Python pyspark RDD.sumApprox用法及代碼示例
- Python pyspark RowMatrix.numCols用法及代碼示例
- Python pyspark RowMatrix.computePrincipalComponents用法及代碼示例
- Python pyspark RDD.lookup用法及代碼示例
- Python pyspark RDD.zipWithIndex用法及代碼示例
注:本文由純淨天空篩選整理自spark.apache.org大神的英文原創作品 pyspark.ml.classification.RandomForestClassifier。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。