先決條件: pd.to_pickle method()
read_pickle()方法用於將給定的對象醃製(序列化)到文件中。此方法使用以下語法:
用法:
pd.read_pickle(path, compression='infer')
參數:
參數 | 類型 | 描述 |
---|---|---|
path | str | 加載醃製對象的文件路徑。 |
compression | {‘infer’,‘gzip’,“ bz2”,‘zip’,‘xz’,無},默認值為‘infer’ | 對於on-the-fly,對on-disk數據進行解壓縮。如果為‘infer’,則如果路徑分別以“ .gz”,“。bz2”,“。xz”或“ .zip”結尾,則使用gzip,bz2,xz或zip,否則不進行解壓縮。設置為無不解壓。 |
下麵是上述方法的實現和一些示例:
範例1:
Python3
# importing packages
import pandas as pd
# dictionary of data
dct = {'ID':{0:23, 1:43, 2:12,
3:13, 4:67, 5:89,
6:90, 7:56, 8:34},
'Name':{0:'Ram', 1:'Deep',
2:'Yash', 3:'Aman',
4:'Arjun', 5:'Aditya',
6:'Divya', 7:'Chalsea',
8:'Akash' },
'Marks':{0:89, 1:97, 2:45, 3:78,
4:56, 5:76, 6:100, 7:87,
8:81},
'Grade':{0:'B', 1:'A', 2:'F', 3:'C',
4:'E', 5:'C', 6:'A', 7:'B',
8:'B'}
}
# forming dataframe
data = pd.DataFrame(dct)
# using to_pickle function to form file
# with name 'pickle_file'
pd.to_pickle(data,'./pickle_file.pkl')
# unpickled the data by using the
# pd.read_pickle method
unpickled_data = pd.read_pickle("./pickle_file.pkl")
print(unpickled_data)
輸出:
範例2:
Python3
# importing packages
import pandas as pd
# dictionary of data
dct = {"f1":range(6), "b1":range(6, 12)}
# forming dataframe
data = pd.DataFrame(dct)
# using to_pickle function to form file
# with name 'pickle_data'
pd.to_pickle(data,'./pickle_data.pkl')
# unpickled the data by using the
# pd.read_pickle method
unpickled_data = pd.read_pickle("./pickle_data.pkl")
print(unpickled_data)
輸出:
注:本文由純淨天空篩選整理自 DataFrame.read_pickle() method in Pandas。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。