本文整理匯總了TypeScript中@turf/helpers.feature函數的典型用法代碼示例。如果您正苦於以下問題:TypeScript feature函數的具體用法?TypeScript feature怎麽用?TypeScript feature使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了feature函數的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的TypeScript代碼示例。
示例1: pointToLineDistance
/**
* Returns the minimum distance between a {@link Point} and a {@link LineString}, being the distance from a line the
* minimum distance between the point and any segment of the `LineString`.
*
* @name pointToLineDistance
* @param {Feature<Point>|Array<number>} pt Feature or Geometry
* @param {Feature<LineString>} line GeoJSON Feature or Geometry
* @param {Object} [options={}] Optional parameters
* @param {string} [options.units="kilometers"] can be anything supported by turf/convertLength
* (ex: degrees, radians, miles, or kilometers)
* @param {string} [options.method="geodesic"] wether to calculate the distance based on geodesic (spheroid) or
* planar (flat) method. Valid options are 'geodesic' or 'planar'.
* @returns {number} distance between point and line
* @example
* var pt = turf.point([0, 0]);
* var line = turf.lineString([[1, 1],[-1, 1]]);
*
* var distance = turf.pointToLineDistance(pt, line, {units: 'miles'});
* //=69.11854715938406
*/
function pointToLineDistance(pt: Coord, line: Feature<LineString> | LineString, options: {
units?: Units,
method?: "geodesic" | "planar",
} = {}): number {
// Optional parameters
if (!options.method) { options.method = "geodesic"; }
if (!options.units) { options.units = "kilometers"; }
// validation
if (!pt) { throw new Error("pt is required"); }
if (Array.isArray(pt)) { pt = point(pt);
} else if (pt.type === "Point") { pt = feature(pt);
} else { featureOf(pt, "Point", "point"); }
if (!line) { throw new Error("line is required"); }
if (Array.isArray(line)) { line = lineString(line);
} else if (line.type === "LineString") { line = feature(line);
} else { featureOf(line, "LineString", "line"); }
let distance = Infinity;
const p = pt.geometry.coordinates;
segmentEach(line, (segment) => {
const a = segment!.geometry.coordinates[0];
const b = segment!.geometry.coordinates[1];
const d = distanceToSegment(p, a, b, options);
if (d < distance) { distance = d; }
});
return convertLength(distance, "degrees", options.units);
}
示例2: concave
/**
* Takes a set of {@link Point|points} and returns a concave hull Polygon or MultiPolygon.
* Internally, this uses [turf-tin](https://github.com/Turfjs/turf-tin) to generate geometries.
*
* @name concave
* @param {FeatureCollection<Point>} points input points
* @param {Object} [options={}] Optional parameters
* @param {number} [options.maxEdge=Infinity] the length (in 'units') of an edge necessary for part of the
* hull to become concave.
* @param {string} [options.units='kilometers'] can be degrees, radians, miles, or kilometers
* @returns {Feature<(Polygon|MultiPolygon)>|null} a concave hull (null value is returned if unable to compute hull)
* @example
* var points = turf.featureCollection([
* turf.point([-63.601226, 44.642643]),
* turf.point([-63.591442, 44.651436]),
* turf.point([-63.580799, 44.648749]),
* turf.point([-63.573589, 44.641788]),
* turf.point([-63.587665, 44.64533]),
* turf.point([-63.595218, 44.64765])
* ]);
* var options = {units: 'miles', maxEdge: 1};
*
* var hull = turf.concave(points, options);
*
* //addToMap
* var addToMap = [points, hull]
*/
function concave(
points: FeatureCollection<Point>,
options: {maxEdge?: number, units?: Units} = {},
): Feature<Polygon | MultiPolygon> | null {
const maxEdge = options.maxEdge || Infinity;
const cleaned = removeDuplicates(points);
const tinPolys = tin(cleaned);
// calculate length of all edges and area of all triangles
// and remove triangles that fail the max length test
tinPolys.features = tinPolys.features.filter((triangle) => {
const pt1 = triangle.geometry.coordinates[0][0];
const pt2 = triangle.geometry.coordinates[0][1];
const pt3 = triangle.geometry.coordinates[0][2];
const dist1 = distance(pt1, pt2, options);
const dist2 = distance(pt2, pt3, options);
const dist3 = distance(pt1, pt3, options);
return (dist1 <= maxEdge && dist2 <= maxEdge && dist3 <= maxEdge);
});
if (tinPolys.features.length < 1) { return null; }
// merge the adjacent triangles
const dissolved: any = dissolve(tinPolys);
// geojson-dissolve always returns a MultiPolygon
if (dissolved.coordinates.length === 1) {
dissolved.coordinates = dissolved.coordinates[0];
dissolved.type = "Polygon";
}
return feature(dissolved);
}
示例3: intersects
/**
* Takes any LineString or Polygon GeoJSON and returns the intersecting point(s).
*
* @name lineIntersect
* @param {GeoJSON} line1 any LineString or Polygon
* @param {GeoJSON} line2 any LineString or Polygon
* @returns {FeatureCollection<Point>} point(s) that intersect both
* @example
* var line1 = turf.lineString([[126, -11], [129, -21]]);
* var line2 = turf.lineString([[123, -18], [131, -14]]);
* var intersects = turf.lineIntersect(line1, line2);
*
* //addToMap
* var addToMap = [line1, line2, intersects]
*/
function lineIntersect<
G1 extends LineString|MultiLineString|Polygon|MultiPolygon,
G2 extends LineString|MultiLineString|Polygon|MultiPolygon
>(
line1: FeatureCollection<G1> | Feature<G1> | G1,
line2: FeatureCollection<G2> | Feature<G2> | G2,
): FeatureCollection<Point> {
const unique: any = {};
const results: any[] = [];
// First, normalize geometries to features
// Then, handle simple 2-vertex segments
if (line1.type === "LineString") { line1 = feature(line1); }
if (line2.type === "LineString") { line2 = feature(line2); }
if (line1.type === "Feature" &&
line2.type === "Feature" &&
line1.geometry !== null &&
line2.geometry !== null &&
line1.geometry.type === "LineString" &&
line2.geometry.type === "LineString" &&
line1.geometry.coordinates.length === 2 &&
line2.geometry.coordinates.length === 2) {
const intersect = intersects(line1, line2);
if (intersect) { results.push(intersect); }
return featureCollection(results);
}
// Handles complex GeoJSON Geometries
const tree = rbush();
tree.load(lineSegment(line2));
featureEach(lineSegment(line1), (segment) => {
featureEach(tree.search(segment), (match) => {
const intersect = intersects(segment, match);
if (intersect) {
// prevent duplicate points https://github.com/Turfjs/turf/issues/688
const key = getCoords(intersect).join(",");
if (!unique[key]) {
unique[key] = true;
results.push(intersect);
}
}
});
});
return featureCollection(results);
}
示例4: intersects
/**
* Takes any LineString or Polygon GeoJSON and returns the intersecting point(s).
*
* @name lineIntersect
* @param {Geometry|FeatureCollection|Feature<LineString|MultiLineString|Polygon|MultiPolygon>} line1 any LineString or Polygon
* @param {Geometry|FeatureCollection|Feature<LineString|MultiLineString|Polygon|MultiPolygon>} line2 any LineString or Polygon
* @returns {FeatureCollection<Point>} point(s) that intersect both
* @example
* var line1 = turf.lineString([[126, -11], [129, -21]]);
* var line2 = turf.lineString([[123, -18], [131, -14]]);
* var intersects = turf.lineIntersect(line1, line2);
*
* //addToMap
* var addToMap = [line1, line2, intersects]
*/
function lineIntersect<G1 extends LineString|MultiLineString|Polygon|MultiPolygon, G2 extends LineString|MultiLineString|Polygon|MultiPolygon>(
line1: FeatureCollection<G1> | Feature<G1> | G1,
line2: FeatureCollection<G2> | Feature<G2> | G2,
): FeatureCollection<Point> {
var unique = {};
var results = [];
// First, normalize geometries to features
// Then, handle simple 2-vertex segments
if (line1.type === 'LineString') line1 = feature(line1);
if (line2.type === 'LineString') line2 = feature(line2);
if (line1.type === 'Feature' &&
line2.type === 'Feature' &&
line1.geometry.type === 'LineString' &&
line2.geometry.type === 'LineString' &&
line1.geometry.coordinates.length === 2 &&
line2.geometry.coordinates.length === 2) {
var intersect = intersects(line1, line2);
if (intersect) results.push(intersect);
return featureCollection(results);
}
// Handles complex GeoJSON Geometries
var tree = rbush();
tree.load(lineSegment(line2));
featureEach(lineSegment(line1), function (segment) {
featureEach(tree.search(segment), function (match) {
var intersect = intersects(segment, match);
if (intersect) {
// prevent duplicate points https://github.com/Turfjs/turf/issues/688
var key = getCoords(intersect).join(',');
if (!unique[key]) {
unique[key] = true;
results.push(intersect);
}
}
});
});
return featureCollection(results);
}
示例5: cleanCoords
// To-Do => Improve Typescript GeoJSON handling
/**
* Removes redundant coordinates from any GeoJSON Geometry.
*
* @name cleanCoords
* @param {Geometry|Feature} geojson Feature or Geometry
* @param {Object} [options={}] Optional parameters
* @param {boolean} [options.mutate=false] allows GeoJSON input to be mutated
* @returns {Geometry|Feature} the cleaned input Feature/Geometry
* @example
* var line = turf.lineString([[0, 0], [0, 2], [0, 5], [0, 8], [0, 8], [0, 10]]);
* var multiPoint = turf.multiPoint([[0, 0], [0, 0], [2, 2]]);
*
* turf.cleanCoords(line).geometry.coordinates;
* //= [[0, 0], [0, 10]]
*
* turf.cleanCoords(multiPoint).geometry.coordinates;
* //= [[0, 0], [2, 2]]
*/
function cleanCoords(geojson: any, options: {
mutate?: boolean,
} = {}) {
// Backwards compatible with v4.0
var mutate = (typeof options === 'object') ? options.mutate : options;
if (!geojson) throw new Error('geojson is required');
var type = getType(geojson);
// Store new "clean" points in this Array
var newCoords = [];
switch (type) {
case 'LineString':
newCoords = cleanLine(geojson);
break;
case 'MultiLineString':
case 'Polygon':
getCoords(geojson).forEach(function (line) {
newCoords.push(cleanLine(line));
});
break;
case 'MultiPolygon':
getCoords(geojson).forEach(function (polygons: any) {
var polyPoints = [];
polygons.forEach(function (ring) {
polyPoints.push(cleanLine(ring));
});
newCoords.push(polyPoints);
});
break;
case 'Point':
return geojson;
case 'MultiPoint':
var existing = {};
getCoords(geojson).forEach(function (coord: any) {
var key = coord.join('-');
if (!existing.hasOwnProperty(key)) {
newCoords.push(coord);
existing[key] = true;
}
});
break;
default:
throw new Error(type + ' geometry not supported');
}
// Support input mutation
if (geojson.coordinates) {
if (mutate === true) {
geojson.coordinates = newCoords;
return geojson;
}
return {type: type, coordinates: newCoords};
} else {
if (mutate === true) {
geojson.geometry.coordinates = newCoords;
return geojson;
}
return feature({type: type, coordinates: newCoords}, geojson.properties, {bbox: geojson.bbox, id: geojson.id});
}
}
示例6: feature
.map(function (key) {
var geometry = { type: key, coordinates: groups[key].coordinates };
var properties = { collectedProperties: groups[key].properties };
return feature(geometry, properties);
}));