本文整理匯總了TypeScript中@tensorflow/tfjs-core.transpose函數的典型用法代碼示例。如果您正苦於以下問題:TypeScript transpose函數的具體用法?TypeScript transpose怎麽用?TypeScript transpose使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了transpose函數的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的TypeScript代碼示例。
示例1: extractParams
export function extractParams(weights: Float32Array): NetParams {
const {
extractWeights,
getRemainingWeights
} = extractWeightsFactory(weights)
const {
extractConvLayerParams,
extractResidualLayerParams
} = extractorsFactory(extractWeights)
const conv32_down = extractConvLayerParams(4704, 32, 7)
const conv32_1 = extractResidualLayerParams(9216, 32, 3)
const conv32_2 = extractResidualLayerParams(9216, 32, 3)
const conv32_3 = extractResidualLayerParams(9216, 32, 3)
const conv64_down = extractResidualLayerParams(36864, 64, 3, true)
const conv64_1 = extractResidualLayerParams(36864, 64, 3)
const conv64_2 = extractResidualLayerParams(36864, 64, 3)
const conv64_3 = extractResidualLayerParams(36864, 64, 3)
const conv128_down = extractResidualLayerParams(147456, 128, 3, true)
const conv128_1 = extractResidualLayerParams(147456, 128, 3)
const conv128_2 = extractResidualLayerParams(147456, 128, 3)
const conv256_down = extractResidualLayerParams(589824, 256, 3, true)
const conv256_1 = extractResidualLayerParams(589824, 256, 3)
const conv256_2 = extractResidualLayerParams(589824, 256, 3)
const conv256_down_out = extractResidualLayerParams(589824, 256, 3)
const fc = tf.transpose(tf.tensor2d(extractWeights(256 * 128), [128, 256]), [1, 0])
if (getRemainingWeights().length !== 0) {
throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`)
}
return {
conv32_down,
conv32_1,
conv32_2,
conv32_3,
conv64_down,
conv64_1,
conv64_2,
conv64_3,
conv128_down,
conv128_1,
conv128_2,
conv256_down,
conv256_1,
conv256_2,
conv256_down_out,
fc
}
}
示例2: extractFilterValues
function extractFilterValues(numFilterValues: number, numFilters: number, filterSize: number): tf.Tensor4D {
const weights = extractWeights(numFilterValues)
const depth = weights.length / (numFilters * filterSize * filterSize)
if (isFloat(depth)) {
throw new Error(`depth has to be an integer: ${depth}, weights.length: ${weights.length}, numFilters: ${numFilters}, filterSize: ${filterSize}`)
}
return tf.transpose(
tf.tensor4d(weights, [numFilters, depth, filterSize, filterSize]),
[2, 3, 1, 0]
)
}
示例3: decodeBoxesLayer
function decodeBoxesLayer(x0: tf.Tensor2D, x1: tf.Tensor2D) {
const {
sizes,
centers
} = getCenterCoordinatesAndSizesLayer(x0)
const vec = tf.unstack(tf.transpose(x1, [1, 0]))
const div0_out = tf.div(tf.mul(tf.exp(tf.div(vec[2], tf.scalar(5))), sizes[0]), tf.scalar(2))
const add0_out = tf.add(tf.mul(tf.div(vec[0], tf.scalar(10)), sizes[0]), centers[0])
const div1_out = tf.div(tf.mul(tf.exp(tf.div(vec[3], tf.scalar(5))), sizes[1]), tf.scalar(2))
const add1_out = tf.add(tf.mul(tf.div(vec[1], tf.scalar(10)), sizes[1]), centers[1])
return tf.transpose(
tf.stack([
tf.sub(add0_out, div0_out),
tf.sub(add1_out, div1_out),
tf.add(add0_out, div0_out),
tf.add(add1_out, div1_out)
]),
[1, 0]
)
}
示例4: getCenterCoordinatesAndSizesLayer
function getCenterCoordinatesAndSizesLayer(x: tf.Tensor2D) {
const vec = tf.unstack(tf.transpose(x, [1, 0]))
const sizes = [
tf.sub(vec[2], vec[0]),
tf.sub(vec[3], vec[1])
]
const centers = [
tf.add(vec[0], tf.div(sizes[0], tf.scalar(2))),
tf.add(vec[1], tf.div(sizes[1], tf.scalar(2)))
]
return {
sizes,
centers
}
}
示例5: switch
export let executeOp: OpExecutor = (node: Node, tensorMap: NamedTensorsMap,
context: ExecutionContext):
tfc.Tensor[] => {
switch (node.op) {
case 'matMul':
return [tfc.matMul(
getParamValue('a', node, tensorMap, context) as tfc.Tensor2D,
getParamValue('b', node, tensorMap, context) as tfc.Tensor2D,
getParamValue('transposeA', node, tensorMap, context) as boolean,
getParamValue('transposeB', node, tensorMap, context) as boolean)];
case 'transpose':
return [tfc.transpose(
getParamValue('x', node, tensorMap, context) as tfc.Tensor,
getParamValue('perm', node, tensorMap, context) as number[])];
default:
throw TypeError(`Node type ${node.op} is not implemented`);
}
};