本文整理匯總了Python中zarr.open_group方法的典型用法代碼示例。如果您正苦於以下問題:Python zarr.open_group方法的具體用法?Python zarr.open_group怎麽用?Python zarr.open_group使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類zarr
的用法示例。
在下文中一共展示了zarr.open_group方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: initialize_output_zarr
# 需要導入模塊: import zarr [as 別名]
# 或者: from zarr import open_group [as 別名]
def initialize_output_zarr(out_dir, sad_stats, snps, target_ids, target_labels):
"""Initialize an output Zarr file for SAD stats."""
num_targets = len(target_ids)
num_snps = len(snps)
sad_out = zarr.open_group('%s/sad.zarr' % out_dir, 'w')
# write SNPs
sad_out.create_dataset('snp', data=[snp.rsid for snp in snps], chunks=(32768,))
# write targets
sad_out.create_dataset('target_ids', data=target_ids, compressor=None)
sad_out.create_dataset('target_labels', data=target_labels, compressor=None)
# initialize SAD stats
for sad_stat in sad_stats:
sad_out.create_dataset(sad_stat,
shape=(num_snps, num_targets),
chunks=(128, num_targets),
dtype='float16')
return sad_out
示例2: test_zarr_multiscale
# 需要導入模塊: import zarr [as 別名]
# 或者: from zarr import open_group [as 別名]
def test_zarr_multiscale():
multiscale = [
np.random.random((20, 20)),
np.random.random((10, 10)),
np.random.random((5, 5)),
]
with TemporaryDirectory(suffix='.zarr') as fout:
root = zarr.open_group(fout, 'a')
for i in range(len(multiscale)):
shape = 20 // 2 ** i
z = root.create_dataset(str(i), shape=(shape,) * 2)
z[:] = multiscale[i]
multiscale_in = io.magic_imread([fout])
assert len(multiscale) == len(multiscale_in)
# Note: due to lazy loading, the next line needs to happen within
# the context manager. Alternatively, we could convert to NumPy here.
for images, images_in in zip(multiscale, multiscale_in):
np.testing.assert_array_equal(images, images_in)
示例3: test_zarr_multiscale
# 需要導入模塊: import zarr [as 別名]
# 或者: from zarr import open_group [as 別名]
def test_zarr_multiscale():
viewer = ViewerModel()
multiscale = [
np.random.random((20, 20)),
np.random.random((10, 10)),
np.random.random((5, 5)),
]
with TemporaryDirectory(suffix='.zarr') as fout:
root = zarr.open_group(fout, 'a')
for i in range(len(multiscale)):
shape = 20 // 2 ** i
z = root.create_dataset(str(i), shape=(shape,) * 2)
z[:] = multiscale[i]
viewer.open(fout, multiscale=True, plugin='builtins')
assert len(viewer.layers) == 1
assert len(multiscale) == len(viewer.layers[0].data)
# Note: due to lazy loading, the next line needs to happen within
# the context manager. Alternatively, we could convert to NumPy here.
for images, images_in in zip(multiscale, viewer.layers[0].data):
np.testing.assert_array_equal(images, images_in)
示例4: test_resize_zarr_dataset
# 需要導入模塊: import zarr [as 別名]
# 或者: from zarr import open_group [as 別名]
def test_resize_zarr_dataset(self):
@xs.process
class P:
arr = xs.variable(dims="x", intent="out")
model = xs.Model({"p": P})
in_ds = xs.create_setup(
model=model, clocks={"clock": [0, 1, 2]}, output_vars={"p__arr": "clock"},
)
store = ZarrSimulationStore(in_ds, model)
for step, size in zip([0, 1, 2], [1, 3, 2]):
model.state[("p", "arr")] = np.ones(size)
store.write_output_vars(-1, step)
ztest = zarr.open_group(store.zgroup.store, mode="r")
expected = np.array(
[[1.0, np.nan, np.nan], [1.0, 1.0, 1.0], [1.0, 1.0, np.nan]]
)
np.testing.assert_array_equal(ztest.p__arr, expected)
示例5: __init__
# 需要導入模塊: import zarr [as 別名]
# 或者: from zarr import open_group [as 別名]
def __init__(
self,
path=None,
num_flush_threads=0,
compressor=DEFAULT_COMPRESSOR,
chunk_size=1024,
max_file_size=None,
):
self._mode = self.BUILD_MODE
self._num_flush_threads = num_flush_threads
self._chunk_size = max(1, chunk_size)
self._metadata_codec = numcodecs.JSON()
self._compressor = compressor
self.data = zarr.group()
self.path = path
if path is not None:
store = self._new_lmdb_store(max_file_size)
self.data = zarr.open_group(store=store, mode="w")
self.data.attrs[FORMAT_NAME_KEY] = self.FORMAT_NAME
self.data.attrs[FORMAT_VERSION_KEY] = self.FORMAT_VERSION
self.data.attrs["uuid"] = str(uuid.uuid4())
chunks = self._chunk_size
provenances_group = self.data.create_group("provenances")
provenances_group.create_dataset(
"timestamp",
shape=(0,),
chunks=chunks,
compressor=self._compressor,
dtype=object,
object_codec=self._metadata_codec,
)
provenances_group.create_dataset(
"record",
shape=(0,),
chunks=chunks,
compressor=self._compressor,
dtype=object,
object_codec=self._metadata_codec,
)
示例6: collect_zarr
# 需要導入模塊: import zarr [as 別名]
# 或者: from zarr import open_group [as 別名]
def collect_zarr(file_name, out_dir, num_procs):
final_zarr_file = '%s/%s' % (out_dir, file_name)
# seed w/ job0
job_zarr_file = '%s/job0/%s' % (out_dir, file_name)
shutil.copytree(job_zarr_file, final_zarr_file)
# open final
final_zarr_open = zarr.open_group(final_zarr_file)
for pi in range(1, num_procs):
# open job
job_zarr_file = '%s/job%d/%s' % (out_dir, pi, file_name)
job_zarr_open = zarr.open_group(job_zarr_file, 'r')
# append to final
for key in final_zarr_open.keys():
if key in ['percentiles', 'target_ids', 'target_labels']:
# once is enough
pass
elif key[-4:] == '_pct':
# average
u_k1 = np.array(final_zarr_open[key])
x_k = np.array(job_zarr_open[key])
final_zarr_open[key] = u_k1 + (x_k - u_k1) / (pi+1)
else:
# append
final_zarr_open[key].append(job_zarr_open[key])
示例7: update
# 需要導入模塊: import zarr [as 別名]
# 或者: from zarr import open_group [as 別名]
def update(self, output_path: str, global_attrs: Dict[str, Any] = None, **kwargs):
if global_attrs:
import zarr
ds = zarr.open_group(output_path, mode='r+', **kwargs)
ds.attrs.update(global_attrs)
# noinspection PyAbstractClass
示例8: append_time_slice
# 需要導入模塊: import zarr [as 別名]
# 或者: from zarr import open_group [as 別名]
def append_time_slice(store: Union[str, MutableMapping],
time_slice: xr.Dataset,
chunk_sizes: Dict[str, int] = None):
"""
Append time slice to existing zarr dataset.
:param store: A zarr store.
:param time_slice: Time slice to insert
:param chunk_sizes: desired chunk sizes
"""
if chunk_sizes:
time_slice = chunk_dataset(time_slice, chunk_sizes, format_name='zarr')
# Unfortunately time_slice.to_zarr(store, mode='a', append_dim='time') will replace global attributes of store
# with attributes of time_slice (xarray bug?), which are usually empty in our case.
# Hence, we must save our old attributes in a copy of time_slice.
ds = zarr.open_group(store, mode='r')
time_slice = time_slice.copy()
time_slice.attrs.update(ds.attrs)
if 'coordinates' in time_slice.attrs:
# Remove 'coordinates', otherwise we get
# ValueError: cannot serialize coordinates because the global attribute 'coordinates' already exists
# from next time_slice.to_zarr(...) call.
time_slice.attrs.pop('coordinates')
time_slice.to_zarr(store, mode='a', append_dim='time')
unchunk_dataset(store, coords_only=True)
示例9: load_zarr_data
# 需要導入模塊: import zarr [as 別名]
# 或者: from zarr import open_group [as 別名]
def load_zarr_data(zarr_fn, chrom, s1, s2, gdistkey=None):
import zarr
samples1 = get_sample_ids(s1)
samples2 = get_sample_ids(s2)
zfh = zarr.open_group(zarr_fn, mode="r")[chrom]
samples_x = zfh["samples"][:]
sample_name = [sid.decode() for sid in samples_x.tolist()]
idx1 = np.array([sample_name.index(sid) for sid in samples1])
idx2 = np.array([sample_name.index(sid) for sid in samples2])
g = allel.GenotypeChunkedArray(zfh["calldata"]["genotype"])
pos = allel.SortedIndex(zfh["variants"]["POS"][:])
if gdistkey is not None:
gdist = h5fh["variants"][gdistkey][:]
else:
gdist = None
return g.take(idx1, axis=1), g.take(idx2, axis=1), pos, gdist
示例10: test_write_output_vars
# 需要導入模塊: import zarr [as 別名]
# 或者: from zarr import open_group [as 別名]
def test_write_output_vars(self, in_ds, store):
model = store.model
model.state[("profile", "u")] = np.array([1.0, 2.0, 3.0])
model.state[("roll", "u_diff")] = np.array([-1.0, 1.0, 0.0])
model.state[("add", "offset")] = 2.0
store.write_output_vars(-1, 0)
ztest = zarr.open_group(store.zgroup.store, mode="r")
assert ztest.profile__u.shape == (in_ds.clock.size, 3)
np.testing.assert_array_equal(ztest.profile__u[0], np.array([1.0, 2.0, 3.0]))
assert ztest.roll__u_diff.shape == (in_ds.out.size, 3)
np.testing.assert_array_equal(ztest.roll__u_diff[0], np.array([-1.0, 1.0, 0.0]))
assert ztest.add__u_diff.shape == (in_ds.out.size,)
np.testing.assert_array_equal(
ztest.add__u_diff, np.array([2.0, np.nan, np.nan])
)
# test save master clock but not out clock
store.write_output_vars(-1, 1)
np.testing.assert_array_equal(ztest.profile__u[1], np.array([1.0, 2.0, 3.0]))
np.testing.assert_array_equal(
ztest.roll__u_diff[1], np.array([np.nan, np.nan, np.nan])
)
# test save no-clock outputs
store.write_output_vars(-1, -1)
np.testing.assert_array_equal(
ztest.profile__u_opp, np.array([-1.0, -2.0, -3.0])
)
assert ztest.add__offset[()] == 2.0
示例11: test_write_output_vars_batch
# 需要導入模塊: import zarr [as 別名]
# 或者: from zarr import open_group [as 別名]
def test_write_output_vars_batch(self, store_batch, model_batch1, model_batch2):
model_batch1.state[("profile", "u")] = np.array([1.0, 2.0, 3.0])
model_batch2.state[("profile", "u")] = np.array([4.0, 5.0, 6.0])
model_batch1.state[("roll", "u_diff")] = np.array([-1.0, 1.0, 0.0])
model_batch2.state[("roll", "u_diff")] = np.array([0.0, 1.0, -1.0])
model_batch1.state[("add", "offset")] = 2.0
model_batch2.state[("add", "offset")] = 3.0
store_batch.write_output_vars(0, 0, model=model_batch1)
store_batch.write_output_vars(1, 0, model=model_batch2)
ztest = zarr.open_group(store_batch.zgroup.store, mode="r")
assert ztest.profile__u.ndim == 3
np.testing.assert_array_equal(
ztest.profile__u[:, 0, :], np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
)
store_batch.write_output_vars(0, -1, model=model_batch1)
store_batch.write_output_vars(1, -1, model=model_batch2)
np.testing.assert_array_equal(ztest.add__offset[:], np.array([2.0, 3.0]))
# test default chunk size along batch dim
assert ztest.profile__u.chunks[0] == 1
示例12: test_write_index_vars
# 需要導入模塊: import zarr [as 別名]
# 或者: from zarr import open_group [as 別名]
def test_write_index_vars(self, store):
store.model.state[("init_profile", "x")] = np.array([1.0, 2.0, 3.0])
store.write_index_vars()
ztest = zarr.open_group(store.zgroup.store, mode="r")
np.testing.assert_array_equal(ztest.x, np.array([1.0, 2.0, 3.0]))
示例13: test_write_index_vars_batch
# 需要導入模塊: import zarr [as 別名]
# 或者: from zarr import open_group [as 別名]
def test_write_index_vars_batch(self, store_batch, model_batch1):
# ensure that no batch dim is created
model_batch1.state[("init_profile", "x")] = np.array([1.0, 2.0, 3.0])
store_batch.write_index_vars(model=model_batch1)
ztest = zarr.open_group(store_batch.zgroup.store, mode="r")
np.testing.assert_array_equal(ztest.x, np.array([1.0, 2.0, 3.0]))
示例14: HDF5_to_zarr
# 需要導入模塊: import zarr [as 別名]
# 或者: from zarr import open_group [as 別名]
def HDF5_to_zarr(hdf5_file,CLOBBER=False,MODE=0o775):
#-- split extension from input HDF5 file
fileBasename,fileExtension = os.path.splitext(hdf5_file)
#-- convert HDF5 file into zarr file
zarr_file = '{0}.zarr'.format(fileBasename)
#-- if zarr file exists in file system: check if HDF5 file is newer
TEST = False
OVERWRITE = ' (clobber)'
#-- last modification time of HDF5 file
hdf5_mtime = os.stat(hdf5_file).st_mtime
#-- check if local version of file exists
if os.access(zarr_file, os.F_OK):
#-- check last modification time of zarr file
zarr_mtime = os.stat(zarr_file).st_mtime
#-- if HDF5 file is newer: overwrite the zarr file
if (hdf5_mtime > zarr_mtime):
TEST = True
OVERWRITE = ' (overwrite)'
else:
TEST = True
OVERWRITE = ' (new)'
#-- if zarr file does not exist, is to be overwritten, or CLOBBER is set
if TEST or CLOBBER:
#-- output string for printing files transferred
output = '{0} -->\n\t{1}{2}\n'.format(hdf5_file,zarr_file,OVERWRITE)
#-- copy everything from the HDF5 file to the zarr file
with h5py.File(hdf5_file,mode='r') as source:
dest = zarr.open_group(zarr_file,mode='w')
#-- value checks on output zarr
if not hasattr(dest, 'create_dataset'):
raise ValueError('dest must be a group, got {!r}'.format(dest))
#-- for each key in the root of the hdf5 file structure
for k in source.keys():
copy_from_HDF5(source[k], dest, name=k)
#-- keep remote modification time of file and local access time
os.utime(zarr_file, (os.stat(zarr_file).st_atime, hdf5_mtime))
os.chmod(zarr_file, MODE)
#-- return the output string
return output
#-- PURPOSE: Copy a named variable from the HDF5 file to the zarr file
示例15: _load
# 需要導入模塊: import zarr [as 別名]
# 或者: from zarr import open_group [as 別名]
def _load(self):
import zarr
if self._grp is None:
# obtain the zarr root group
if isinstance(self._urlpath, zarr.hierarchy.Group):
# use already-opened group, allows support for nested groups
# as catalogs
root = self._urlpath
else:
# obtain store
if isinstance(self._urlpath, str):
# open store from url
from fsspec import get_mapper
store = get_mapper(self._urlpath, **self._storage_options)
else:
# assume store passed directly
store = self._urlpath
# open root group
if self._consolidated:
# use consolidated metadata
root = zarr.open_consolidated(store=store, mode='r')
else:
root = zarr.open_group(store=store, mode='r')
# deal with component path
if self._component is None:
self._grp = root
else:
self._grp = root[self._component]
# use zarr attributes as metadata
self.metadata.update(self._grp.attrs.asdict())
# build catalog entries
entries = {}
for k, v in self._grp.items():
if isinstance(v, zarr.core.Array):
entry = LocalCatalogEntry(name=k,
description='',
driver='ndzarr',
args=dict(urlpath=v),
catalog=self)
else:
entry = LocalCatalogEntry(name=k,
description='',
driver='zarr_cat',
args=dict(urlpath=v))
entries[k] = entry
self._entries = entries