本文整理匯總了Python中z3.Or方法的典型用法代碼示例。如果您正苦於以下問題:Python z3.Or方法的具體用法?Python z3.Or怎麽用?Python z3.Or使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類z3
的用法示例。
在下文中一共展示了z3.Or方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: any
# 需要導入模塊: import z3 [as 別名]
# 或者: from z3 import Or [as 別名]
def any(self, *conds): return self.bfold(conds, z3.Or, False, True)
示例2: scheduling_constraints
# 需要導入模塊: import z3 [as 別名]
# 或者: from z3 import Or [as 別名]
def scheduling_constraints(self):
"""
DAG scheduling constraints optimization
Sets overlap indicator variables
"""
for gate in self.gate_start_time:
for dep_gate in self.dag.successors(gate):
if not dep_gate.type == 'op':
continue
if isinstance(dep_gate.op, Measure):
continue
if isinstance(dep_gate.op, Barrier):
continue
fin_g = self.gate_start_time[gate] + self.gate_duration[gate]
self.opt.add(self.gate_start_time[dep_gate] > fin_g)
for g_1 in self.xtalk_overlap_set:
for g_2 in self.xtalk_overlap_set[g_1]:
if len(g_2.qargs) == 2 and self.gate_id[g_1] > self.gate_id[g_2]:
# Symmetry breaking: create only overlap variable for a pair
# of gates
continue
s_1 = self.gate_start_time[g_1]
f_1 = s_1 + self.gate_duration[g_1]
s_2 = self.gate_start_time[g_2]
f_2 = s_2 + self.gate_duration[g_2]
# This constraint enforces full or zero overlap between two gates
before = (f_1 < s_2)
after = (f_2 < s_1)
overlap1 = And(s_2 <= s_1, f_1 <= f_2)
overlap2 = And(s_1 <= s_2, f_2 <= f_1)
self.opt.add(Or(before, after, overlap1, overlap2))
intervals_overlap = And(s_2 <= f_1, s_1 <= f_2)
self.opt.add(self.overlap_indicator[g_1][g_2] == intervals_overlap)
示例3: _gen_path_constraints
# 需要導入模塊: import z3 [as 別名]
# 或者: from z3 import Or [as 別名]
def _gen_path_constraints(self, translator, expr, expected):
"""Generate path constraint from @expr. Handle special case with
generated loc_keys
"""
out = []
expected = canonize_to_exprloc(self._ircfg.loc_db, expected)
expected_is_loc_key = expected.is_loc()
for consval in possible_values(expr):
value = canonize_to_exprloc(self._ircfg.loc_db, consval.value)
if expected_is_loc_key and value != expected:
continue
if not expected_is_loc_key and value.is_loc_key():
continue
conds = z3.And(*[translator.from_expr(cond.to_constraint())
for cond in consval.constraints])
if expected != value:
conds = z3.And(
conds,
translator.from_expr(
ExprAssign(value,
expected))
)
out.append(conds)
if out:
conds = z3.Or(*out)
else:
# Ex: expr: lblgen1, expected: 0x1234
# -> Avoid inconsistent solution lblgen1 = 0x1234
conds = translator.from_expr(self.unsat_expr)
return conds
示例4: _get_collisions
# 需要導入模塊: import z3 [as 別名]
# 或者: from z3 import Or [as 別名]
def _get_collisions(hash_func, target, target_type, length, n_collisions, hash_table_size, *args):
ret = []
s = z3.Solver()
# houses the z3 variables for the potential hash match
res = _generate_ascii_printable_string('res', length, s)
# enforces the z3 constraint that the hash matches the target
# if the target_type is 'preimage', then we compare the hash to the hash of target
if target_type == 'preimage':
s.add(hash_func(res, hash_table_size, *args) == hash_func(_str_to_BitVecVals8(target), hash_table_size, *args))
if length == len(target): # don't generate the given preimage as an output if generating inputs of that length
s.add(z3.Or([r != ord(t) for r, t in zip(res, target)]))
# otherwise the target_type is 'image', and we compare the hash to the target itself
else:
s.add(hash_func(res, hash_table_size, *args) == target)
count = 0
# z3 isn't stateful; you have to run it again and again while adding constraints to ignore previous solutions
while s.check() == z3.sat:
x = s.model() # This is a z3 solution
y = ''.join(chr(x[i].as_long()) for i in res)
ret.append(y)
count += 1
# add constraints
s.add(z3.Or([r != x[r] for r in res]))
if count >= n_collisions:
ret.sort()
break
return ret
示例5: __or__
# 需要導入模塊: import z3 [as 別名]
# 或者: from z3 import Or [as 別名]
def __or__(l, r):
return Or(l, fexpr_cast(r))
示例6: __ror__
# 需要導入模塊: import z3 [as 別名]
# 或者: from z3 import Or [as 別名]
def __ror__(r, l):
return Or(fexpr_cast(l), r)
示例7: z3Node
# 需要導入模塊: import z3 [as 別名]
# 或者: from z3 import Or [as 別名]
def z3Node(self):
return z3.Or(self.left.z3Node(), self.right.z3Node())
示例8: remapLabels
# 需要導入模塊: import z3 [as 別名]
# 或者: from z3 import Or [as 別名]
def remapLabels(self, policy, writer):
return Or(
self.left.remapLabels(policy, writer)
, self.right.remapLabels(policy, writer))
示例9: visit_EBinOp
# 需要導入模塊: import z3 [as 別名]
# 或者: from z3 import Or [as 別名]
def visit_EBinOp(self, e, env):
# optimization: x in (distinct y) --> x in y
# ("distinct" is very expensive for the solver)
if e.op == BOp.In and isinstance(e.e2, EUnaryOp) and e.e2.op == UOp.Distinct:
return self.visit(EIn(e.e1, e.e2.e), env)
# normal path
v1 = self.visit(e.e1, env)
v2 = self.visit(e.e2, env)
if e.op == BOp.And:
return self.all(v1, v2)
elif e.op == BOp.Or:
return self.any(v1, v2)
elif e.op == "=>":
return self.implies(v1, v2)
elif e.op == "==":
return self.eq(e.e1.type, v1, v2)
elif e.op == "!=":
return self.neg(self.eq(e.e1.type, v1, v2))
elif e.op == "===":
return self.eq(e.e1.type, v1, v2, deep=True)
elif e.op == ">":
return self.gt(e.e1.type, v1, v2, env)
elif e.op == "<":
return self.lt(e.e1.type, v1, v2, env)
elif e.op == ">=":
return v1 >= v2
elif e.op == "<=":
return v1 <= v2
elif e.op == "*":
return v1 * v2
elif e.op == "+":
if isinstance(e.type, TBag) or isinstance(e.type, TList):
return (v1[0] + v2[0], v1[1] + v2[1])
elif isinstance(e.type, TSet):
return self.visit(EUnaryOp(UOp.Distinct, EBinOp(e.e1, "+", e.e2).with_type(TBag(e.type.elem_type))).with_type(TBag(e.type.elem_type)), env)
elif is_numeric(e.type):
return v1 + v2
else:
raise NotImplementedError(e.type)
elif e.op == "-":
if isinstance(e.type, TBag) or isinstance(e.type, TSet) or isinstance(e.type, TList):
return self.remove_all(e.type, v1, v2, env)
return v1 - v2
elif e.op == BOp.In:
return self.is_in(e.e1.type, v2, v1, env)
else:
raise NotImplementedError(e.op)
示例10: run
# 需要導入模塊: import z3 [as 別名]
# 或者: from z3 import Or [as 別名]
def run(output):
ast = parse_input(options['hash'])
variables = {} # map from names to z3_vars
z3_expression = ast.convert_to_z3(variables)
solver = z3.Solver()
if options['target_type'] == 'image':
solver.add(options['image'] == z3_expression)
elif options['target_type'] == 'preimage':
# extract and validate the user-provided preimage
preimage = options['preimage']
var_defs = preimage.split(',')
variable_values = {}
if len(var_defs) < len(variables):
raise ValueError('Not enough preimage values given for all variables used in the equation')
for var_def in var_defs:
try:
variable_name, value = var_def.split('=', 1)
except ValueError:
raise ValueError('Invalid syntax for preimage values')
variable_name = variable_name.strip()
if variable_name in variable_values:
raise ValueError('Multiple preimage values given for variable "%s"' % variable_name)
try:
value = int(value)
except ValueError:
raise ValueError('Preimage value "%s" for variable "%s" is not an integer' % (value, variable_name))
variable_values[variable_name] = value
for variable_name in variables:
if variable_name not in variable_values:
raise ValueError('Preimage value not given for variable "%s"' % variable_name)
# we have a preimage but we want an image to set z3_expression equal to for solving
# so we set a new variable equal to z3_expression, provide the preimage values,
# and then ask Z3 to solve for our new variable
target_var = z3.BitVec('__v', ast.target_width)
sub_solver = z3.Solver()
sub_solver.add(target_var == z3_expression)
for variable in variables:
sub_solver.add(variables[variable] == variable_values[variable])
assert sub_solver.check() == z3.sat # this should always hold, since the target var is unbounded
solution = sub_solver.model()
target_value = solution[target_var]
# we can now set z3_expression equal to the appropriate image
solver.add(target_value == z3_expression)
# and also prevent the preimage values being generated as a solution
solver.add(z3.Or([var() != solution[var] for var in solution if var.name() != '__v']))
solutions = []
while solver.check() == z3.sat and len(solutions) < options['n_collisions']:
solution = solver.model()
solutions.append(solution)
# prevent duplicate solutions
solver.add(z3.Or([var() != solution[var] for var in solution]))
output.output(solutions)
示例11: generate_reaching_constraints
# 需要導入模塊: import z3 [as 別名]
# 或者: from z3 import Or [as 別名]
def generate_reaching_constraints(self):
visitor = ConditionVisitor(self.view)
for (
(start, end),
reaching_condition,
) in self.reaching_conditions.items():
or_exprs = []
for condition in reaching_condition:
and_exprs = []
for edge in condition:
if edge.type == BranchType.UnconditionalBranch:
continue
if edge.type == BranchType.TrueBranch:
condition = edge.source[-1].condition
if (
condition.operation
== MediumLevelILOperation.MLIL_VAR
):
condition = self.function.get_ssa_var_definition(
edge.source[-1].ssa_form.condition.src
).src
and_exprs.append(visitor.simplify(condition))
elif edge.type == BranchType.FalseBranch:
condition = edge.source[-1].condition
if (
condition.operation
== MediumLevelILOperation.MLIL_VAR
):
condition = self.function.get_ssa_var_definition(
edge.source[-1].ssa_form.condition.src
).src
and_exprs += Tactic("ctx-solver-simplify")(
Not(visitor.simplify(condition))
)[0]
if and_exprs != []:
or_exprs.append(And(*and_exprs))
if or_exprs:
or_exprs = Tactic("ctx-solver-simplify")(Or(*or_exprs))[0]
reaching_constraint = (
And(*or_exprs)
if len(or_exprs) > 1
else or_exprs[0]
if len(or_exprs)
else BoolVal(True)
)
self._reaching_constraints[(start, end)] = reaching_constraint