當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.get_random_data方法代碼示例

本文整理匯總了Python中yolo3.utils.get_random_data方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.get_random_data方法的具體用法?Python utils.get_random_data怎麽用?Python utils.get_random_data使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在yolo3.utils的用法示例。


在下文中一共展示了utils.get_random_data方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: data_generator

# 需要導入模塊: from yolo3 import utils [as 別名]
# 或者: from yolo3.utils import get_random_data [as 別名]
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, random=True, verbose=False):
    '''data generator for fit_generator'''
    n = len(annotation_lines)
    i = 0
    while True:
        image_data = []
        box_data = []
        for b in range(batch_size):
            if i==0 and random:
                np.random.shuffle(annotation_lines)
            image, box = get_random_data(annotation_lines[i], input_shape, random=random)
            image_data.append(image)
            box_data.append(box)
            i = (i+1) % n
        image_data = np.array(image_data)
        if verbose:
            print("Progress: ",i,"/",n)
        box_data = np.array(box_data)
        y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
        yield [image_data, *y_true], np.zeros(batch_size) 
開發者ID:bing0037,項目名稱:keras-yolo3,代碼行數:22,代碼來源:train_bottleneck.py

示例2: bottleneck_generator

# 需要導入模塊: from yolo3 import utils [as 別名]
# 或者: from yolo3.utils import get_random_data [as 別名]
def bottleneck_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, bottlenecks):
    n = len(annotation_lines)
    i = 0
    while True:
        box_data = []
        b0=np.zeros((batch_size,bottlenecks[0].shape[1],bottlenecks[0].shape[2],bottlenecks[0].shape[3]))
        b1=np.zeros((batch_size,bottlenecks[1].shape[1],bottlenecks[1].shape[2],bottlenecks[1].shape[3]))
        b2=np.zeros((batch_size,bottlenecks[2].shape[1],bottlenecks[2].shape[2],bottlenecks[2].shape[3]))
        for b in range(batch_size):
            _, box = get_random_data(annotation_lines[i], input_shape, random=False, proc_img=False)
            box_data.append(box)
            b0[b]=bottlenecks[0][i]
            b1[b]=bottlenecks[1][i]
            b2[b]=bottlenecks[2][i]
            i = (i+1) % n
        box_data = np.array(box_data)
        y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
        yield [b0, b1, b2, *y_true], np.zeros(batch_size) 
開發者ID:bing0037,項目名稱:keras-yolo3,代碼行數:20,代碼來源:train_bottleneck.py

示例3: data_generator

# 需要導入模塊: from yolo3 import utils [as 別名]
# 或者: from yolo3.utils import get_random_data [as 別名]
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):
    '''data generator for fit_generator'''
    n = len(annotation_lines)
    i = 0
    while True:
        image_data = []
        box_data = []
        for b in range(batch_size):
            if i==0:
                np.random.shuffle(annotation_lines)
            image, box = get_random_data(annotation_lines[i], input_shape, random=True)
            image_data.append(image)
            box_data.append(box)
            i = (i+1) % n
        image_data = np.array(image_data)   # input of original yolo: image
        box_data = np.array(box_data)       # output of original yolo: boxes
        y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes) # some kind of output description?!
        yield [image_data, *y_true], np.zeros(batch_size) 
開發者ID:bing0037,項目名稱:keras-yolo3,代碼行數:20,代碼來源:train.py

示例4: data_generator

# 需要導入模塊: from yolo3 import utils [as 別名]
# 或者: from yolo3.utils import get_random_data [as 別名]
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):
    n = len(annotation_lines)
    np.random.shuffle(annotation_lines)
    i = 0
    while True:
        image_data = []
        box_data = []
        for b in range(batch_size):
            i %= n
            image, box = get_random_data(annotation_lines[i], input_shape, random=True)
            image_data.append(image)
            box_data.append(box)
            i += 1
        image_data = np.array(image_data)
        box_data = np.array(box_data)
        y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
        yield [image_data, *y_true], np.zeros(batch_size) 
開發者ID:lijialinneu,項目名稱:keras-yolo3-master,代碼行數:19,代碼來源:train.py

示例5: data_generator

# 需要導入模塊: from yolo3 import utils [as 別名]
# 或者: from yolo3.utils import get_random_data [as 別名]
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):
    '''data generator for fit_generator'''
    n = len(annotation_lines)
    i = 0
    while True:
        image_data = []
        box_data = []
        for b in range(batch_size):
            if i==0:
                np.random.shuffle(annotation_lines)
            image, box = get_random_data(annotation_lines[i], input_shape, random=True)
            image_data.append(image)
            box_data.append(box)
            i = (i+1) % n
        image_data = np.array(image_data)
        box_data = np.array(box_data)
        y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
        yield [image_data, *y_true], np.zeros(batch_size) 
開發者ID:Akhtar303,項目名稱:Vehicle-Detection-and-Tracking-Usig-YOLO-and-Deep-Sort-with-Keras-and-Tensorflow,代碼行數:20,代碼來源:train.py

示例6: parse_tfrecord

# 需要導入模塊: from yolo3 import utils [as 別名]
# 或者: from yolo3.utils import get_random_data [as 別名]
def parse_tfrecord(self, example_proto):
        feature_description = {
            'image/encoded': tf.io.FixedLenFeature([], tf.string),
            'image/object/bbox/xmin': tf.io.VarLenFeature(tf.float32),
            'image/object/bbox/xmax': tf.io.VarLenFeature(tf.float32),
            'image/object/bbox/ymin': tf.io.VarLenFeature(tf.float32),
            'image/object/bbox/ymax': tf.io.VarLenFeature(tf.float32),
            'image/object/bbox/label': tf.io.VarLenFeature(tf.int64)
        }
        features = tf.io.parse_single_example(example_proto,
                                              feature_description)
        image = tf.image.decode_image(features['image/encoded'],
                                      channels=3,
                                      dtype=tf.float32)
        image.set_shape([None, None, 3])
        xmins = features['image/object/bbox/xmin'].values
        xmaxs = features['image/object/bbox/xmax'].values
        ymins = features['image/object/bbox/ymin'].values
        ymaxs = features['image/object/bbox/ymax'].values
        labels = features['image/object/bbox/label'].values
        image, bbox = get_random_data(image,
                                      xmins,
                                      xmaxs,
                                      ymins,
                                      ymaxs,
                                      labels,
                                      self.input_shape,
                                      train=self.mode == DATASET_MODE.TRAIN)
        y1, y2, y3 = tf.py_function(
            preprocess_true_boxes,
            [bbox, self.input_shape, self.anchors, self.num_classes],
            [tf.float32, tf.float32, tf.float32])
        y1.set_shape([None, None, len(self.anchors) // 3, self.num_classes + 5])
        y2.set_shape([None, None, len(self.anchors) // 3, self.num_classes + 5])
        y3.set_shape([None, None, len(self.anchors) // 3, self.num_classes + 5])

        return image, (y1, y2, y3) 
開發者ID:fsx950223,項目名稱:mobilenetv2-yolov3,代碼行數:39,代碼來源:data.py

示例7: parse_text

# 需要導入模塊: from yolo3 import utils [as 別名]
# 或者: from yolo3.utils import get_random_data [as 別名]
def parse_text(self, line):
        values = tf.strings.split([line], ' ').values
        image = tf.image.decode_image(tf.io.read_file(values[0]),
                                      channels=3,
                                      dtype=tf.float32)
        image.set_shape([None, None, 3])
        reshaped_data = tf.reshape(values[1:], [-1, 5])
        xmins = tf.strings.to_number(reshaped_data[:, 0], tf.float32)
        xmaxs = tf.strings.to_number(reshaped_data[:, 2], tf.float32)
        ymins = tf.strings.to_number(reshaped_data[:, 1], tf.float32)
        ymaxs = tf.strings.to_number(reshaped_data[:, 3], tf.float32)
        labels = tf.strings.to_number(reshaped_data[:, 4], tf.int64)

        image, bbox = get_random_data(image,
                                      xmins,
                                      xmaxs,
                                      ymins,
                                      ymaxs,
                                      labels,
                                      self.input_shape,
                                      train=self.mode == DATASET_MODE.TRAIN)
        y1, y2, y3 = tf.py_function(
            preprocess_true_boxes,
            [bbox, self.input_shape, self.anchors, self.num_classes],
            [tf.float32, tf.float32, tf.float32])
        y1.set_shape([None, None, len(self.anchors) // 3, self.num_classes + 5])
        y2.set_shape([None, None, len(self.anchors) // 3, self.num_classes + 5])
        y3.set_shape([None, None, len(self.anchors) // 3, self.num_classes + 5])

        return image, (y1, y2, y3) 
開發者ID:fsx950223,項目名稱:mobilenetv2-yolov3,代碼行數:32,代碼來源:data.py


注:本文中的yolo3.utils.get_random_data方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。