當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.compose方法代碼示例

本文整理匯總了Python中yolo3.utils.compose方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.compose方法的具體用法?Python utils.compose怎麽用?Python utils.compose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在yolo3.utils的用法示例。


在下文中一共展示了utils.compose方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: yolo_body

# 需要導入模塊: from yolo3 import utils [as 別名]
# 或者: from yolo3.utils import compose [as 別名]
def yolo_body(inputs, num_anchors, num_classes):
    """Create YOLO_V3 model CNN body in Keras."""
    darknet = Model(inputs, darknet_body(inputs))
    x, y1 = make_last_layers(darknet.output, 512, num_anchors*(num_classes+5))

    x = compose(
            DarknetConv2D_BN_Leaky(256, (1,1)),
            UpSampling2D(2))(x)
    x = Concatenate()([x,darknet.layers[152].output])
    x, y2 = make_last_layers(x, 256, num_anchors*(num_classes+5))

    x = compose(
            DarknetConv2D_BN_Leaky(128, (1,1)),
            UpSampling2D(2))(x)
    x = Concatenate()([x,darknet.layers[92].output])
    x, y3 = make_last_layers(x, 128, num_anchors*(num_classes+5))

    return Model(inputs, [y1,y2,y3]) 
開發者ID:bing0037,項目名稱:keras-yolo3,代碼行數:20,代碼來源:model.py

示例2: MobilenetSeparableConv2D

# 需要導入模塊: from yolo3 import utils [as 別名]
# 或者: from yolo3.utils import compose [as 別名]
def MobilenetSeparableConv2D(filters,
                             kernel_size,
                             strides=(1, 1),
                             padding='valid',
                             use_bias=True):
    return compose(
        tf.keras.layers.DepthwiseConv2D(kernel_size,
                                        padding=padding,
                                        use_bias=use_bias,
                                        strides=strides),
        tf.keras.layers.BatchNormalization(), tf.keras.layers.ReLU(6.),
        tf.keras.layers.Conv2D(filters,
                               1,
                               padding='same',
                               use_bias=use_bias,
                               strides=1), tf.keras.layers.BatchNormalization(),
        tf.keras.layers.ReLU(6.)) 
開發者ID:fsx950223,項目名稱:mobilenetv2-yolov3,代碼行數:19,代碼來源:model.py

示例3: DarknetConv2D_BN_Leaky

# 需要導入模塊: from yolo3 import utils [as 別名]
# 或者: from yolo3.utils import compose [as 別名]
def DarknetConv2D_BN_Leaky(*args, **kwargs):
    """Darknet Convolution2D followed by BatchNormalization and LeakyReLU."""
    no_bias_kwargs = {'use_bias': False}
    no_bias_kwargs.update(kwargs)
    return compose(
        DarknetConv2D(*args, **no_bias_kwargs),
        BatchNormalization(),
        LeakyReLU(alpha=0.1)) 
開發者ID:bing0037,項目名稱:keras-yolo3,代碼行數:10,代碼來源:model.py

示例4: resblock_body

# 需要導入模塊: from yolo3 import utils [as 別名]
# 或者: from yolo3.utils import compose [as 別名]
def resblock_body(x, num_filters, num_blocks):
    '''A series of resblocks starting with a downsampling Convolution2D'''
    # Darknet uses left and top padding instead of 'same' mode
    x = ZeroPadding2D(((1,0),(1,0)))(x)
    x = DarknetConv2D_BN_Leaky(num_filters, (3,3), strides=(2,2))(x)
    for i in range(num_blocks):
        y = compose(
                DarknetConv2D_BN_Leaky(num_filters//2, (1,1)),
                DarknetConv2D_BN_Leaky(num_filters, (3,3)))(x)
        x = Add()([x,y])
    return x 
開發者ID:bing0037,項目名稱:keras-yolo3,代碼行數:13,代碼來源:model.py

示例5: make_last_layers

# 需要導入模塊: from yolo3 import utils [as 別名]
# 或者: from yolo3.utils import compose [as 別名]
def make_last_layers(x, num_filters, out_filters):
    '''6 Conv2D_BN_Leaky layers followed by a Conv2D_linear layer'''
    x = compose(
            DarknetConv2D_BN_Leaky(num_filters, (1,1)),
            DarknetConv2D_BN_Leaky(num_filters*2, (3,3)),
            DarknetConv2D_BN_Leaky(num_filters, (1,1)),
            DarknetConv2D_BN_Leaky(num_filters*2, (3,3)),
            DarknetConv2D_BN_Leaky(num_filters, (1,1)))(x)
    y = compose(
            DarknetConv2D_BN_Leaky(num_filters*2, (3,3)),
            DarknetConv2D(out_filters, (1,1)))(x)
    return x, y 
開發者ID:bing0037,項目名稱:keras-yolo3,代碼行數:14,代碼來源:model.py

示例6: tiny_yolo_body

# 需要導入模塊: from yolo3 import utils [as 別名]
# 或者: from yolo3.utils import compose [as 別名]
def tiny_yolo_body(inputs, num_anchors, num_classes):
    '''Create Tiny YOLO_v3 model CNN body in keras.'''
    x1 = compose(
            DarknetConv2D_BN_Leaky(16, (3,3)),
            MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
            DarknetConv2D_BN_Leaky(32, (3,3)),
            MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
            DarknetConv2D_BN_Leaky(64, (3,3)),
            MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
            DarknetConv2D_BN_Leaky(128, (3,3)),
            MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
            DarknetConv2D_BN_Leaky(256, (3,3)))(inputs)
    x2 = compose(
            MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
            DarknetConv2D_BN_Leaky(512, (3,3)),
            MaxPooling2D(pool_size=(2,2), strides=(1,1), padding='same'),
            DarknetConv2D_BN_Leaky(1024, (3,3)),
            DarknetConv2D_BN_Leaky(256, (1,1)))(x1)
    y1 = compose(
            DarknetConv2D_BN_Leaky(512, (3,3)),
            DarknetConv2D(num_anchors*(num_classes+5), (1,1)))(x2)

    x2 = compose(
            DarknetConv2D_BN_Leaky(128, (1,1)),
            UpSampling2D(2))(x2)
    y2 = compose(
            Concatenate(),
            DarknetConv2D_BN_Leaky(256, (3,3)),
            DarknetConv2D(num_anchors*(num_classes+5), (1,1)))([x2,x1])

    return Model(inputs, [y1,y2]) 
開發者ID:bing0037,項目名稱:keras-yolo3,代碼行數:33,代碼來源:model.py


注:本文中的yolo3.utils.compose方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。