本文整理匯總了Python中yolo3.model.yolo_body方法的典型用法代碼示例。如果您正苦於以下問題:Python model.yolo_body方法的具體用法?Python model.yolo_body怎麽用?Python model.yolo_body使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類yolo3.model
的用法示例。
在下文中一共展示了model.yolo_body方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_model
# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
weights_path='model_data/yolo_weights.h5'):
'''create the training model'''
K.clear_session() # get a new session
image_input = Input(shape=(None, None, 3))
h, w = input_shape
num_anchors = len(anchors)
# y_true = [Input(shape=(416//{0:32, 1:16, 2:8}[l], 416//{0:32, 1:16, 2:8}[l], 9//3, 80+5)) for l in range(3)]
y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], num_anchors//3, num_classes+5)) for l in range(3)]
model_body = yolo_body(image_input, num_anchors//3, num_classes)
print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
if load_pretrained:
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
print('Load weights {}.'.format(weights_path))
if freeze_body in [1, 2]:
# Freeze darknet53 body or freeze all but 3 output layers.
num = (185, len(model_body.layers)-3)[freeze_body-1]
for i in range(num): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
[*model_body.output, *y_true])
model = Model([model_body.input, *y_true], model_loss)
print('model_body.input: ', model_body.input)
print('model.input: ', model.input)
return model
示例2: create_model
# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=True):
'''create the training model'''
image_input = Input(shape=(None, None, 3))
h, w = input_shape
num_anchors = len(anchors)//3
y_true = [Input(shape=(h//32, w//32, num_anchors, num_classes+5)),
Input(shape=(h//16, w//16, num_anchors, num_classes+5)),
Input(shape=(h//8, w//8, num_anchors, num_classes+5))]
model_body = yolo_body(image_input, num_anchors, num_classes)
if load_pretrained:
weights_path = os.path.join('model_data', 'yolo_weights.h5')
if not os.path.exists(weights_path):
print("CREATING WEIGHTS FILE" + weights_path)
yolo_path = os.path.join('model_data', 'yolo.h5')
orig_model = load_model(yolo_path, compile=False)
orig_model.save_weights(weights_path)
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
if freeze_body:
# Do not freeze 3 output layers.
for i in range(len(model_body.layers)-3):
model_body.layers[i].trainable = False
model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes})(
[*model_body.output, *y_true])
model = Model([model_body.input, *y_true], model_loss)
return model_body, model
示例3: generate
# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def generate(self):
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
# Load model, or construct model and load weights.
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
is_tiny_version = num_anchors==6 # default setting
try:
self.yolo_model = load_model(model_path, compile=False)
except:
self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes'
print('{} model, anchors, and classes loaded.'.format(model_path))
# Generate colors for drawing bounding boxes.
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
np.random.seed(10101) # Fixed seed for consistent colors across runs.
np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
np.random.seed(None) # Reset seed to default.
# Generate output tensor targets for filtered bounding boxes.
self.input_image_shape = K.placeholder(shape=(2, ))
if self.gpu_num>=2:
self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
len(self.class_names), self.input_image_shape,
score_threshold=self.score, iou_threshold=self.iou)
return boxes, scores, classes
示例4: create_model
# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False,
weights_path='model_data/yolo_weights.h5'):
K.clear_session() # get a new session
image_input = Input(shape=(None, None, 3))
h, w = input_shape
num_anchors = len(anchors)
y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
num_anchors//3, num_classes+5)) for l in range(3)]
model_body = yolo_body(image_input, num_anchors//3, num_classes)
print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
if load_pretrained:
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
print('Load weights {}.'.format(weights_path))
if freeze_body:
# Do not freeze 3 output layers.
num = len(model_body.layers)-7
for i in range(num): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
[*model_body.output, *y_true])
model = Model([model_body.input, *y_true], model_loss)
return model
示例5: create_model
# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
weights_path='model_data/yolo_weights.h5'):
'''create the training model'''
K.clear_session() # get a new session
image_input = Input(shape=(None, None, 3))
h, w = input_shape
num_anchors = len(anchors)
y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
num_anchors//3, num_classes+5)) for l in range(3)]
model_body = yolo_body(image_input, num_anchors//3, num_classes)
print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
if load_pretrained:
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
print('Load weights {}.'.format(weights_path))
if freeze_body in [1, 2]:
# Freeze darknet53 body or freeze all but 3 output layers.
num = (185, len(model_body.layers)-3)[freeze_body-1]
for i in range(num): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
[*model_body.output, *y_true])
model = Model([model_body.input, *y_true], model_loss)
return model
開發者ID:Akhtar303,項目名稱:Vehicle-Detection-and-Tracking-Usig-YOLO-and-Deep-Sort-with-Keras-and-Tensorflow,代碼行數:31,代碼來源:train.py
示例6: generate
# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def generate(self):
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
# Load model, or construct model and load weights.
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
is_tiny_version = num_anchors == 6 # default setting
try:
self.yolo_model = load_model(model_path, compile=False)
except:
self.yolo_model = tiny_yolo_body(Input(shape=(None, None, 3)), num_anchors // 2, num_classes) \
if is_tiny_version else yolo_body(Input(shape=(None, None, 3)), num_anchors // 3, num_classes)
self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors / len(self.yolo_model.output) * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes'
print('{} model, anchors, and classes loaded.'.format(model_path))
# Generate colors for drawing bounding boxes.
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
np.random.seed(10101) # Fixed seed for consistent colors across runs.
np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
np.random.seed(None) # Reset seed to default.
# Generate output tensor targets for filtered bounding boxes.
self.input_image_shape = K.placeholder(shape=(2,))
if self.gpu_num >= 2:
self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
len(self.class_names), self.input_image_shape,
score_threshold=self.score, iou_threshold=self.iou)
return boxes, scores, classes
示例7: create_model
# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False,
weights_path='model_data/yolo_weights.h5'):
K.clear_session() # get a new session
image_input = Input(shape=(None, None, 3))
h, w = input_shape
num_anchors = len(anchors)
y_true = [Input(shape=(h // {0: 32, 1: 16, 2: 8}[l], w // {0: 32, 1: 16, 2: 8}[l], \
num_anchors // 3, num_classes + 5)) for l in range(3)]
model_body = yolo_body(image_input, num_anchors // 3, num_classes)
print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
if load_pretrained:
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
print('Load weights {}.'.format(weights_path))
if freeze_body:
# Do not freeze 3 output layers.
num = len(model_body.layers) - 7
for i in range(num): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
[*model_body.output, *y_true])
model = Model([model_body.input, *y_true], model_loss)
return model
示例8: generate
# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def generate(self):
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
# Load model, or construct model and load weights.
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
is_tiny_version = num_anchors==6 # default setting
try:
self.yolo_model = load_model(model_path, compile=False)
except:
self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes'
print('{} model, anchors, and classes loaded.'.format(model_path))
# Generate colors for drawing bounding boxes.
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
np.random.seed(10101) # Fixed seed for consistent colors across runs.
np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
np.random.seed(None) # Reset seed to default.
# Generate output tensor targets for filtered bounding boxes.
self.input_image_shape = K.placeholder(shape=(2, ))
if gpu_num>=2:
self.yolo_model = multi_gpu_model(self.yolo_model, gpus=gpu_num)
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
len(self.class_names), self.input_image_shape,
score_threshold=self.score, iou_threshold=self.iou)
return boxes, scores, classes
示例9: generate
# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def generate(self):
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
# Load model, or construct model and load weights.
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
is_tiny_version = num_anchors==6 # default setting
try:
self.yolo_model = load_model(model_path, compile=False)
except:
self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
else:
print('output_shape = %d' %(self.yolo_model.layers[-1].output_shape[-1]))
print('num_anchors = %d' % num_anchors)
print('len = %d' %(len(self.yolo_model.output) * (num_classes + 5)))
print('len_output = %d' %(len(self.yolo_model.output)))
assert self.yolo_model.layers[-1].output_shape[-1] == num_anchors/len(self.yolo_model.output) * (num_classes + 5), 'Mismatch between model and given anchor and class sizes'
print('{} model, anchors, and classes loaded.'.format(model_path))
# Generate colors for drawing bounding boxes.
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
np.random.seed(10101) # Fixed seed for consistent colors across runs.
np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
np.random.seed(None) # Reset seed to default.
# Generate output tensor targets for filtered bounding boxes.
self.input_image_shape = K.placeholder(shape=(2, ))
if self.gpu_num>=2:
self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
len(self.class_names), self.input_image_shape,
score_threshold=self.score, iou_threshold=self.iou)
return boxes, scores, classes
示例10: create_model
# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
weights_path='model_data/yolo_weights.h5'):
'''create the training model'''
K.clear_session() # get a new session
image_input = Input(shape=(None, None, 3))
h, w = input_shape
num_anchors = len(anchors)
y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
num_anchors//3, num_classes+5)) for l in range(3)]
model_body = yolo_body(image_input, num_anchors//3, num_classes)
print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
if load_pretrained:
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
print('Load weights {}.'.format(weights_path))
if freeze_body in [1, 2]:
# Freeze darknet53 body or freeze all but 3 output layers.
num = (185, len(model_body.layers)-3)[freeze_body-1]
for i in range(num): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
# get output of second last layers and create bottleneck model of it
out1=model_body.layers[246].output
out2=model_body.layers[247].output
out3=model_body.layers[248].output
bottleneck_model = Model([model_body.input, *y_true], [out1, out2, out3])
# create last layer model of last layers from yolo model
in0 = Input(shape=bottleneck_model.output[0].shape[1:].as_list())
in1 = Input(shape=bottleneck_model.output[1].shape[1:].as_list())
in2 = Input(shape=bottleneck_model.output[2].shape[1:].as_list())
last_out0=model_body.layers[249](in0)
last_out1=model_body.layers[250](in1)
last_out2=model_body.layers[251](in2)
model_last=Model(inputs=[in0, in1, in2], outputs=[last_out0, last_out1, last_out2])
model_loss_last =Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
[*model_last.output, *y_true])
last_layer_model = Model([in0,in1,in2, *y_true], model_loss_last)
model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
[*model_body.output, *y_true])
model = Model([model_body.input, *y_true], model_loss)
return model, bottleneck_model, last_layer_model
示例11: load_model
# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def load_model(self, yolo_weights=None):
model_path = self._get_data_path(self.model_path, self.yolo3_dir)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
if yolo_weights is None:
# Load model, or construct model and load weights.
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
is_tiny_version = num_anchors == 6 # default setting
try:
self.yolo_model = load_model(model_path, compile=False)
except:
self.yolo_model = tiny_yolo_body(Input(shape=(None, None, 3)), num_anchors // 2, num_classes) \
if is_tiny_version else yolo_body(Input(shape=(None, None, 3)), num_anchors // 3, num_classes)
self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors / len(self.yolo_model.output) * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes'
else:
self.yolo_model = yolo_weights
input_image_shape = keras.Input(shape=(2,), name='image_shape')
image_input = keras.Input((None, None, 3), dtype='float32', name='input_1')
y = list(self.yolo_model(image_input))
y.append(input_image_shape)
if len(y) == 3:
evaluation_input = [keras.Input((None, None, 255), dtype='float32', name='conv2d_10'),
keras.Input((None, None, 255), dtype='float32', name='conv2d_13'),
keras.Input(shape=(2,), name='image_shape')
]
elif len(y) == 4:
evaluation_input = [keras.Input((None, None, 255), dtype='float32', name='conv2d_59'),
keras.Input((None, None, 255), dtype='float32', name='conv2d_67'),
keras.Input((None, None, 255), dtype='float32', name='conv2d_75'),
keras.Input(shape=(2,), name='image_shape')
]
boxes, box_scores = \
YOLOEvaluationLayer(anchors=self.anchors, num_classes=len(self.class_names))(inputs=evaluation_input)
self.evaluation_model = keras.Model(inputs=evaluation_input,
outputs=[boxes, box_scores])
nms_input = [keras.Input((4,), dtype='float32', name='concat_9'),
keras.Input((80,), dtype='float32', name='concat_10'),]
out_boxes, out_scores, out_indices = \
YOLONMSLayer(anchors=self.anchors, num_classes=len(self.class_names))(
inputs=nms_input)
self.nms_model = keras.Model(inputs=nms_input,
outputs=[out_boxes, out_scores, out_indices])
boxes, box_scores = \
YOLOEvaluationLayer(anchors=self.anchors, num_classes=len(self.class_names))(inputs=y)
out_boxes, out_scores, out_indices = \
YOLONMSLayer(anchors=self.anchors, num_classes=len(self.class_names))(
inputs = [boxes, box_scores])
self.final_model = keras.Model(inputs=[image_input, input_image_shape],
outputs = [out_boxes, out_scores, out_indices])
self.final_model.save('final_model.h5')
print('{} model, anchors, and classes loaded.'.format(model_path))