當前位置: 首頁>>代碼示例>>Python>>正文


Python model.yolo_body方法代碼示例

本文整理匯總了Python中yolo3.model.yolo_body方法的典型用法代碼示例。如果您正苦於以下問題:Python model.yolo_body方法的具體用法?Python model.yolo_body怎麽用?Python model.yolo_body使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在yolo3.model的用法示例。


在下文中一共展示了model.yolo_body方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_model

# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    # y_true = [Input(shape=(416//{0:32, 1:16, 2:8}[l], 416//{0:32, 1:16, 2:8}[l], 9//3, 80+5)) for l in range(3)]
    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)
    print('model_body.input: ', model_body.input)
    print('model.input: ', model.input)

    return model 
開發者ID:bing0037,項目名稱:keras-yolo3,代碼行數:33,代碼來源:train.py

示例2: create_model

# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=True):
    '''create the training model'''
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)//3
    y_true = [Input(shape=(h//32, w//32, num_anchors, num_classes+5)),
              Input(shape=(h//16, w//16, num_anchors, num_classes+5)),
              Input(shape=(h//8, w//8, num_anchors, num_classes+5))]

    model_body = yolo_body(image_input, num_anchors, num_classes)

    if load_pretrained:
        weights_path = os.path.join('model_data', 'yolo_weights.h5')
        if not os.path.exists(weights_path):
            print("CREATING WEIGHTS FILE" + weights_path)
            yolo_path = os.path.join('model_data', 'yolo.h5')
            orig_model = load_model(yolo_path, compile=False)
            orig_model.save_weights(weights_path)
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        if freeze_body:
            # Do not freeze 3 output layers.
            for i in range(len(model_body.layers)-3):
                model_body.layers[i].trainable = False

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model_body, model 
開發者ID:scutan90,項目名稱:YOLO-3D-Box,代碼行數:32,代碼來源:train.py

示例3: generate

# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

        # Load model, or construct model and load weights.
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)
        is_tiny_version = num_anchors==6 # default setting
        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
                if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
            self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
                'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if self.gpu_num>=2:
            self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
                len(self.class_names), self.input_image_shape,
                score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes 
開發者ID:lijialinneu,項目名稱:keras-yolo3-master,代碼行數:42,代碼來源:yolo.py

示例4: create_model

# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False,
            weights_path='model_data/yolo_weights.h5'):
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)
    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body:
            # Do not freeze 3 output layers.
            num = len(model_body.layers)-7
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)
    return model 
開發者ID:lijialinneu,項目名稱:keras-yolo3-master,代碼行數:28,代碼來源:train.py

示例5: create_model

# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model 
開發者ID:Akhtar303,項目名稱:Vehicle-Detection-and-Tracking-Usig-YOLO-and-Deep-Sort-with-Keras-and-Tensorflow,代碼行數:31,代碼來源:train.py

示例6: generate

# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

        # Load model, or construct model and load weights.
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)
        is_tiny_version = num_anchors == 6  # default setting
        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = tiny_yolo_body(Input(shape=(None, None, 3)), num_anchors // 2, num_classes) \
                if is_tiny_version else yolo_body(Input(shape=(None, None, 3)), num_anchors // 3, num_classes)
            self.yolo_model.load_weights(self.model_path)  # make sure model, anchors and classes match
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                   num_anchors / len(self.yolo_model.output) * (num_classes + 5), \
                'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2,))
        if self.gpu_num >= 2:
            self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
                                           len(self.class_names), self.input_image_shape,
                                           score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes 
開發者ID:ZzzzzZXxxX,項目名稱:yolo3_keras_Flag_Detection,代碼行數:42,代碼來源:yolo.py

示例7: create_model

# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False,
                 weights_path='model_data/yolo_weights.h5'):
    K.clear_session()  # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)
    y_true = [Input(shape=(h // {0: 32, 1: 16, 2: 8}[l], w // {0: 32, 1: 16, 2: 8}[l], \
                           num_anchors // 3, num_classes + 5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors // 3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body:
            # Do not freeze 3 output layers.
            num = len(model_body.layers) - 7
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
                        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)
    return model 
開發者ID:ZzzzzZXxxX,項目名稱:yolo3_keras_Flag_Detection,代碼行數:28,代碼來源:train.py

示例8: generate

# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

        # Load model, or construct model and load weights.
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)
        is_tiny_version = num_anchors==6 # default setting
        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
                if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
            self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
                'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if gpu_num>=2:
            self.yolo_model = multi_gpu_model(self.yolo_model, gpus=gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
                len(self.class_names), self.input_image_shape,
                score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes 
開發者ID:leviome,項目名稱:human_counter,代碼行數:42,代碼來源:yolo.py

示例9: generate

# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

        # Load model, or construct model and load weights.
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)
        is_tiny_version = num_anchors==6 # default setting
        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
                if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
            self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
        else:
            print('output_shape = %d' %(self.yolo_model.layers[-1].output_shape[-1]))
            print('num_anchors = %d' % num_anchors)
            print('len = %d' %(len(self.yolo_model.output) * (num_classes + 5)))
            print('len_output = %d' %(len(self.yolo_model.output)))
            assert self.yolo_model.layers[-1].output_shape[-1] == num_anchors/len(self.yolo_model.output) * (num_classes + 5), 'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if self.gpu_num>=2:
            self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
                len(self.class_names), self.input_image_shape,
                score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes 
開發者ID:bing0037,項目名稱:keras-yolo3,代碼行數:44,代碼來源:yolo.py

示例10: create_model

# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
            weights_path='model_data/yolo_weights.h5'):
    '''create the training model'''
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)

    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]

    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body in [1, 2]:
            # Freeze darknet53 body or freeze all but 3 output layers.
            num = (185, len(model_body.layers)-3)[freeze_body-1]
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

    # get output of second last layers and create bottleneck model of it
    out1=model_body.layers[246].output
    out2=model_body.layers[247].output
    out3=model_body.layers[248].output
    bottleneck_model = Model([model_body.input, *y_true], [out1, out2, out3])

    # create last layer model of last layers from yolo model
    in0 = Input(shape=bottleneck_model.output[0].shape[1:].as_list()) 
    in1 = Input(shape=bottleneck_model.output[1].shape[1:].as_list())
    in2 = Input(shape=bottleneck_model.output[2].shape[1:].as_list())
    last_out0=model_body.layers[249](in0)
    last_out1=model_body.layers[250](in1)
    last_out2=model_body.layers[251](in2)
    model_last=Model(inputs=[in0, in1, in2], outputs=[last_out0, last_out1, last_out2])
    model_loss_last =Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_last.output, *y_true])
    last_layer_model = Model([in0,in1,in2, *y_true], model_loss_last)

    
    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)

    return model, bottleneck_model, last_layer_model 
開發者ID:bing0037,項目名稱:keras-yolo3,代碼行數:51,代碼來源:train_bottleneck.py

示例11: load_model

# 需要導入模塊: from yolo3 import model [as 別名]
# 或者: from yolo3.model import yolo_body [as 別名]
def load_model(self, yolo_weights=None):
        model_path = self._get_data_path(self.model_path, self.yolo3_dir)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
        if yolo_weights is None:
            # Load model, or construct model and load weights.
            num_anchors = len(self.anchors)
            num_classes = len(self.class_names)
            is_tiny_version = num_anchors == 6  # default setting

            try:
                self.yolo_model = load_model(model_path, compile=False)
            except:
                self.yolo_model = tiny_yolo_body(Input(shape=(None, None, 3)), num_anchors // 2, num_classes) \
                    if is_tiny_version else yolo_body(Input(shape=(None, None, 3)), num_anchors // 3, num_classes)
                self.yolo_model.load_weights(self.model_path)  # make sure model, anchors and classes match
            else:
                assert self.yolo_model.layers[-1].output_shape[-1] == \
                    num_anchors / len(self.yolo_model.output) * (num_classes + 5), \
                    'Mismatch between model and given anchor and class sizes'
        else:
            self.yolo_model = yolo_weights

        input_image_shape = keras.Input(shape=(2,), name='image_shape')
        image_input = keras.Input((None, None, 3), dtype='float32', name='input_1')
        y = list(self.yolo_model(image_input))
        y.append(input_image_shape)

        if len(y) == 3:
            evaluation_input = [keras.Input((None, None, 255), dtype='float32', name='conv2d_10'),
                                keras.Input((None, None, 255), dtype='float32', name='conv2d_13'),
                                keras.Input(shape=(2,), name='image_shape')
                                ]
        elif len(y) == 4:
            evaluation_input = [keras.Input((None, None, 255), dtype='float32', name='conv2d_59'),
                                keras.Input((None, None, 255), dtype='float32', name='conv2d_67'),
                                keras.Input((None, None, 255), dtype='float32', name='conv2d_75'),
                                keras.Input(shape=(2,), name='image_shape')
                                ]

        boxes, box_scores = \
            YOLOEvaluationLayer(anchors=self.anchors, num_classes=len(self.class_names))(inputs=evaluation_input)
        self.evaluation_model = keras.Model(inputs=evaluation_input,
                                            outputs=[boxes, box_scores])

        nms_input = [keras.Input((4,), dtype='float32', name='concat_9'),
                     keras.Input((80,), dtype='float32', name='concat_10'),]
        out_boxes, out_scores, out_indices = \
            YOLONMSLayer(anchors=self.anchors, num_classes=len(self.class_names))(
                inputs=nms_input)
        self.nms_model = keras.Model(inputs=nms_input,
                                     outputs=[out_boxes, out_scores, out_indices])

        boxes, box_scores = \
            YOLOEvaluationLayer(anchors=self.anchors, num_classes=len(self.class_names))(inputs=y)
        out_boxes, out_scores, out_indices = \
            YOLONMSLayer(anchors=self.anchors, num_classes=len(self.class_names))(
                         inputs = [boxes, box_scores])
        self.final_model = keras.Model(inputs=[image_input, input_image_shape],
                                       outputs = [out_boxes, out_scores, out_indices])
        self.final_model.save('final_model.h5')
        print('{} model, anchors, and classes loaded.'.format(model_path)) 
開發者ID:onnx,項目名稱:keras-onnx,代碼行數:63,代碼來源:yolov3.py


注:本文中的yolo3.model.yolo_body方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。