本文整理匯總了Python中xxhash.xxh32方法的典型用法代碼示例。如果您正苦於以下問題:Python xxhash.xxh32方法的具體用法?Python xxhash.xxh32怎麽用?Python xxhash.xxh32使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類xxhash
的用法示例。
在下文中一共展示了xxhash.xxh32方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: lh_perturb
# 需要導入模塊: import xxhash [as 別名]
# 或者: from xxhash import xxh32 [as 別名]
def lh_perturb(real_dist, g, p):
n = sum(real_dist)
noisy_samples = np.zeros(n, dtype=object)
samples_one = np.random.random_sample(n)
seeds = np.random.randint(0, n, n)
counter = 0
for k, v in enumerate(real_dist):
for _ in range(v):
y = x = xxhash.xxh32(str(int(k)), seed=seeds[counter]).intdigest() % g
if samples_one[counter] > p:
y = np.random.randint(0, g - 1)
if y >= x:
y += 1
noisy_samples[counter] = tuple([y, seeds[counter]])
counter += 1
return noisy_samples
示例2: thread_affinity
# 需要導入模塊: import xxhash [as 別名]
# 或者: from xxhash import xxh32 [as 別名]
def thread_affinity(url, total_worker_count):
'''
Ensure only one client ever works on each netloc.
This maintains better consistency of user-agents
'''
# Only limit netlocs if we actually need to.
if not getModuleForUrl(url).single_thread_fetch(url):
return True
netloc = urllib.parse.urlsplit(url).netloc
m = xxhash.xxh32()
m.update(netloc.encode("utf-8"))
nlhash = m.intdigest()
thread_aff = nlhash % total_worker_count
# print("Thread affinity:", self.total_worker_count, self.worker_num, thread_aff, self.worker_num == thread_aff)
return thread_aff
示例3: perturb
# 需要導入模塊: import xxhash [as 別名]
# 或者: from xxhash import xxh32 [as 別名]
def perturb():
global Y
Y = np.zeros(n)
for i in range(n):
v = X[i]
x = (xxhash.xxh32(str(v), seed=i).intdigest() % g)
y = x
p_sample = np.random.random_sample()
# the following two are equivalent
# if p_sample > p:
# while not y == x:
# y = np.random.randint(0, g)
if p_sample > p - q:
# perturb
y = np.random.randint(0, g)
Y[i] = y
示例4: reduce_thread_id
# 需要導入模塊: import xxhash [as 別名]
# 或者: from xxhash import xxh32 [as 別名]
def reduce_thread_id(thread_id: int) -> str:
"""Make a shorter thread identifier by hashing the original."""
return xxhash.xxh32(thread_id.to_bytes(8, "little")).hexdigest()[:4]
示例5: hash_netloc
# 需要導入模塊: import xxhash [as 別名]
# 或者: from xxhash import xxh32 [as 別名]
def hash_netloc(netloc):
m = xxhash.xxh32()
m.update(netloc.encode("utf-8"))
nlhash = m.intdigest()
return nlhash
示例6: hash_file2
# 需要導入模塊: import xxhash [as 別名]
# 或者: from xxhash import xxh32 [as 別名]
def hash_file2(fpath, blocksize=65536, hasher='xx64'):
r"""
Hashes the data in a file on disk using xxHash
xxHash is much faster than sha1, bringing computation time down from .57
seconds to .12 seconds for a 387M file.
my_weights_fpath_ = ub.truepath('~/tmp/my_weights.pt')
xdata = 2 ** np.array([8, 12, 14, 16])
ydatas = ub.ddict(list)
for blocksize in xdata:
print('blocksize = {!r}'.format(blocksize))
ydatas['sha1'].append(ub.Timerit(2).call(ub.hash_file, my_weights_fpath_, hasher='sha1', blocksize=blocksize).min())
ydatas['sha256'].append(ub.Timerit(2).call(ub.hash_file, my_weights_fpath_, hasher='sha256', blocksize=blocksize).min())
ydatas['sha512'].append(ub.Timerit(2).call(ub.hash_file, my_weights_fpath_, hasher='sha512', blocksize=blocksize).min())
ydatas['md5'].append(ub.Timerit(2).call(ub.hash_file, my_weights_fpath_, hasher='md5', blocksize=blocksize).min())
ydatas['xx32'].append(ub.Timerit(2).call(hash_file2, my_weights_fpath_, hasher='xx32', blocksize=blocksize).min())
ydatas['xx64'].append(ub.Timerit(2).call(hash_file2, my_weights_fpath_, hasher='xx64', blocksize=blocksize).min())
import netharn as nh
nh.util.qtensure()
nh.util.multi_plot(xdata, ydatas)
"""
import xxhash
if hasher == 'xx32':
hasher = xxhash.xxh32()
elif hasher == 'xx64':
hasher = xxhash.xxh64()
with open(fpath, 'rb') as file:
buf = file.read(blocksize)
# otherwise hash the entire file
while len(buf) > 0:
hasher.update(buf)
buf = file.read(blocksize)
# Get the hashed representation
text = ub.util_hash._digest_hasher(hasher, hashlen=None,
base=ub.util_hash.DEFAULT_ALPHABET)
return text
示例7: _seed
# 需要導入模塊: import xxhash [as 別名]
# 或者: from xxhash import xxh32 [as 別名]
def _seed(self, val):
"""Returns a unique seed for val and the (optional) namespace."""
if self._namespace:
return xxhash.xxh32(
self._namespace.encode('utf-8') +
Magnitude.RARE_CHAR +
val.encode('utf-8')).intdigest()
else:
return xxhash.xxh32(val.encode('utf-8')).intdigest()
示例8: _seed
# 需要導入模塊: import xxhash [as 別名]
# 或者: from xxhash import xxh32 [as 別名]
def _seed(self, val):
"""Returns a unique seed for val and the (optional) namespace."""
if self._namespace:
return xxhash.xxh32(self._namespace + Magnitude.RARE_CHAR +
val.encode('utf-8')).intdigest()
else:
return xxhash.xxh32(val.encode('utf-8')).intdigest()
示例9: aggregate
# 需要導入模塊: import xxhash [as 別名]
# 或者: from xxhash import xxh32 [as 別名]
def aggregate():
global ESTIMATE_DIST
ESTIMATE_DIST = np.zeros(domain)
for i in range(n):
for v in range(domain):
if Y[i] == (xxhash.xxh32(str(v), seed=i).intdigest() % g):
ESTIMATE_DIST[v] += 1
a = 1.0 * g / (p * g - 1)
b = 1.0 * n / (p * g - 1)
ESTIMATE_DIST = a * ESTIMATE_DIST - b
示例10: perturb
# 需要導入模塊: import xxhash [as 別名]
# 或者: from xxhash import xxh32 [as 別名]
def perturb(self, datas, domain):
n = len(datas)
perturbed_datas = np.zeros(n, dtype=object)
samples_one = np.random.random_sample(n)
seeds = np.random.randint(0, n, n)
for i in range(n):
y = x = xxhash.xxh32(str(int(datas[i])), seed=seeds[i]).intdigest() % self.g
# y = x = (datas[i] * seeds[i]) % self.g
if samples_one[i] > self.p:
y = np.random.randint(0, self.g - 1)
if y >= x:
y += 1
perturbed_datas[i] = tuple([y, seeds[i]])
return perturbed_datas
示例11: support_sr
# 需要導入模塊: import xxhash [as 別名]
# 或者: from xxhash import xxh32 [as 別名]
def support_sr(self, report, value):
return report[0] == (xxhash.xxh32(str(value), seed=report[1]).intdigest() % self.g)
# return report[0] == value * report[1] % self.g
示例12: aggregate
# 需要導入模塊: import xxhash [as 別名]
# 或者: from xxhash import xxh32 [as 別名]
def aggregate(self, domain, perturbed_datas):
n = len(perturbed_datas)
ESTIMATE_DIST = np.zeros(domain, dtype=np.int32)
for i in range(n):
for v in range(domain):
x = xxhash.xxh32(str(v), seed=perturbed_datas[i][1]).intdigest() % self.g
# x = v * perturbed_datas[i][1] % self.g
if perturbed_datas[i][0] == x:
ESTIMATE_DIST[v] += 1
return ESTIMATE_DIST
示例13: lh_aggregate
# 需要導入模塊: import xxhash [as 別名]
# 或者: from xxhash import xxh32 [as 別名]
def lh_aggregate(noisy_samples, domain, g, p, q):
n = len(noisy_samples)
est = np.zeros(domain, dtype=np.int32)
for i in range(n):
for v in range(domain):
x = xxhash.xxh32(str(v), seed=noisy_samples[i][1]).intdigest() % g
if noisy_samples[i][0] == x:
est[v] += 1
a = 1.0 / (p - q)
b = n * q / (p - q)
est = a * est - b
return est
示例14: generateLocation1
# 需要導入模塊: import xxhash [as 別名]
# 或者: from xxhash import xxh32 [as 別名]
def generateLocation1(authticket, lat, lng, alt):
firstHash = xxhash.xxh32(authticket, seed=static_seed).intdigest()
locationBytes = d2h(lat) + d2h(lng) + d2h(alt)
return xxhash.xxh32(locationBytes, seed=firstHash).intdigest()
示例15: generateLocation2
# 需要導入模塊: import xxhash [as 別名]
# 或者: from xxhash import xxh32 [as 別名]
def generateLocation2(lat, lng, alt):
locationBytes = d2h(lat) + d2h(lng) + d2h(alt)
return xxhash.xxh32(locationBytes, seed=static_seed).intdigest()