當前位置: 首頁>>代碼示例>>Python>>正文


Python ElementTree.parse方法代碼示例

本文整理匯總了Python中xml.etree.ElementTree.parse方法的典型用法代碼示例。如果您正苦於以下問題:Python ElementTree.parse方法的具體用法?Python ElementTree.parse怎麽用?Python ElementTree.parse使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在xml.etree.ElementTree的用法示例。


在下文中一共展示了ElementTree.parse方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: parse_rec

# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def parse_rec(filename):
    """ Parse a PASCAL VOC xml file """
    tree = ET.parse(filename)
    objects = []
    for obj in tree.findall('object'):
        obj_struct = {}
        obj_struct['name'] = obj.find('name').text
        obj_struct['pose'] = obj.find('pose').text
        obj_struct['truncated'] = int(obj.find('truncated').text)
        obj_struct['difficult'] = int(obj.find('difficult').text)
        bbox = obj.find('bndbox')
        obj_struct['bbox'] = [int(bbox.find('xmin').text),
                              int(bbox.find('ymin').text),
                              int(bbox.find('xmax').text),
                              int(bbox.find('ymax').text)]
        objects.append(obj_struct)

    return objects 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:20,代碼來源:dis_eval.py

示例2: parse_rec

# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def parse_rec(filename):
  """ Parse a PASCAL VOC xml file """
  tree = ET.parse(filename)
  objects = []
  for obj in tree.findall('object'):
    obj_struct = {}
    obj_struct['name'] = obj.find('name').text
    obj_struct['pose'] = obj.find('pose').text
    obj_struct['truncated'] = int(obj.find('truncated').text)
    obj_struct['difficult'] = int(obj.find('difficult').text)
    bbox = obj.find('bndbox')
    obj_struct['bbox'] = [int(bbox.find('xmin').text),
                          int(bbox.find('ymin').text),
                          int(bbox.find('xmax').text),
                          int(bbox.find('ymax').text)]
    objects.append(obj_struct)

  return objects 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:20,代碼來源:voc_eval.py

示例3: get_subset_by_classes

# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def get_subset_by_classes(self):
        """Filter imgs by user-defined categories."""
        subset_data_infos = []
        for data_info in self.data_infos:
            img_id = data_info['id']
            xml_path = osp.join(self.img_prefix, 'Annotations',
                                f'{img_id}.xml')
            tree = ET.parse(xml_path)
            root = tree.getroot()
            for obj in root.findall('object'):
                name = obj.find('name').text
                if name in self.CLASSES:
                    subset_data_infos.append(data_info)
                    break

        return subset_data_infos 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:18,代碼來源:xml_style.py

示例4: get_cat_ids

# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def get_cat_ids(self, idx):
        """Get category ids in XML file by index.

        Args:
            idx (int): Index of data.

        Returns:
            list[int]: All categories in the image of specified index.
        """

        cat_ids = []
        img_id = self.data_infos[idx]['id']
        xml_path = osp.join(self.img_prefix, 'Annotations', f'{img_id}.xml')
        tree = ET.parse(xml_path)
        root = tree.getroot()
        for obj in root.findall('object'):
            name = obj.find('name').text
            if name not in self.CLASSES:
                continue
            label = self.cat2label[name]
            cat_ids.append(label)

        return cat_ids 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:25,代碼來源:xml_style.py

示例5: parse_voc_rec

# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def parse_voc_rec(filename):
    """
    parse pascal voc record into a dictionary
    :param filename: xml file path
    :return: list of dict
    """
    import xml.etree.ElementTree as ET
    tree = ET.parse(filename)
    objects = []
    for obj in tree.findall('object'):
        obj_dict = dict()
        obj_dict['name'] = obj.find('name').text
        obj_dict['difficult'] = int(obj.find('difficult').text)
        bbox = obj.find('bndbox')
        obj_dict['bbox'] = [int(bbox.find('xmin').text),
                            int(bbox.find('ymin').text),
                            int(bbox.find('xmax').text),
                            int(bbox.find('ymax').text)]
        objects.append(obj_dict)
    return objects 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:22,代碼來源:eval_voc.py

示例6: _parse_voc_anno

# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def _parse_voc_anno(filename):
        import xml.etree.ElementTree as ET
        tree = ET.parse(filename)
        height = int(tree.find('size').find('height').text)
        width = int(tree.find('size').find('width').text)
        objects = []
        for obj in tree.findall('object'):
            obj_dict = dict()
            obj_dict['name'] = obj.find('name').text
            obj_dict['difficult'] = int(obj.find('difficult').text)
            bbox = obj.find('bndbox')
            obj_dict['bbox'] = [int(float(bbox.find('xmin').text)),
                                int(float(bbox.find('ymin').text)),
                                int(float(bbox.find('xmax').text)),
                                int(float(bbox.find('ymax').text))]
            objects.append(obj_dict)
        return height, width, objects 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:19,代碼來源:pascal_voc.py

示例7: parse_rec

# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def parse_rec(filename):
    """ Parse a PASCAL VOC xml file """
    tree = ET.parse(filename)
    objects = []
    for obj in tree.findall('object'):
        obj_struct = {}
        obj_struct['name'] = obj.find('name').text
        obj_struct['pose'] = obj.find('pose').text
        obj_struct['truncated'] = int(obj.find('truncated').text)
        obj_struct['difficult'] = int(obj.find('difficult').text)
        bbox = obj.find('bndbox')
        obj_struct['bbox'] = [int(bbox.find('xmin').text),
                              int(bbox.find('ymin').text),
                              int(bbox.find('xmax').text),
                              int(bbox.find('ymax').text)]
        objects.append(obj_struct)
    return objects 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:utils.py

示例8: parse_labelme_poly

# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def parse_labelme_poly(filename):
    """ Parse a labelme xml file """
    tree = ET.parse(filename)
    objects = []
    for obj in tree.findall('object'):
        obj_struct = {}
        obj_struct['name'] = obj.find('name').text
        obj_struct['deleted'] = obj.find('deleted').text
        obj_struct['verified'] = int(obj.find('verified').text)
        obj_struct['occluded'] = obj.find('occluded').text
        obj_struct['attributes'] = obj.find('attributes').text
        poly = obj.find('polygon').findall('pt')
        obj_struct['polygon'] = []
        for point in poly:
            pt = [point.find('x').text, point.find('y').text]
            obj_struct['polygon'] = obj_struct['polygon'] + pt
        objects.append(obj_struct)
    return objects 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:utils.py

示例9: __init__

# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def __init__(self, fname):
        """
        Loads a mujoco xml from file.

        Args:
            fname (str): path to the MJCF xml file.
        """
        self.file = fname
        self.folder = os.path.dirname(fname)
        self.tree = ET.parse(fname)
        self.root = self.tree.getroot()
        self.name = self.root.get("model")
        self.worldbody = self.create_default_element("worldbody")
        self.actuator = self.create_default_element("actuator")
        self.asset = self.create_default_element("asset")
        self.equality = self.create_default_element("equality")
        self.contact = self.create_default_element("contact")
        self.default = self.create_default_element("default")
        self.resolve_asset_dependency() 
開發者ID:StanfordVL,項目名稱:robosuite,代碼行數:21,代碼來源:base.py

示例10: __getitem__

# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def __getitem__(self, item):
        id = self.ids[item]
        image_path = os.path.join(self.data_path, "JPEGImages", "{}.jpg".format(id))
        image = cv2.imread(image_path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        image_xml_path = os.path.join(self.data_path, "Annotations", "{}.xml".format(id))
        annot = ET.parse(image_xml_path)

        objects = []
        for obj in annot.findall('object'):
            xmin, xmax, ymin, ymax = [int(obj.find('bndbox').find(tag).text) - 1 for tag in
                                      ["xmin", "xmax", "ymin", "ymax"]]
            label = self.classes.index(obj.find('name').text.lower().strip())
            objects.append([xmin, ymin, xmax, ymax, label])
        if self.is_training:
            transformations = Compose([HSVAdjust(), VerticalFlip(), Crop(), Resize(self.image_size)])
        else:
            transformations = Compose([Resize(self.image_size)])
        image, objects = transformations((image, objects))

        return np.transpose(np.array(image, dtype=np.float32), (2, 0, 1)), np.array(objects, dtype=np.float32) 
開發者ID:uvipen,項目名稱:Yolo-v2-pytorch,代碼行數:23,代碼來源:voc_dataset.py

示例11: pull_item

# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def pull_item(self, index):
        img_id = self.ids[index]

        target = ET.parse(self._annopath % img_id).getroot()
        img = cv2.imread(self._imgpath % img_id)
        height, width, channels = img.shape

        if self.target_transform is not None:
            target = self.target_transform(target, width, height)

        if self.transform is not None:
            target = np.array(target)
            img, boxes, labels = self.transform(img, target[:, :4], target[:, 4])
            # to rgb
            img = img[:, :, (2, 1, 0)]
            # img = img.transpose(2, 0, 1)
            target = np.hstack((boxes, np.expand_dims(labels, axis=1)))
        return torch.from_numpy(img).permute(2, 0, 1), target, height, width
        # return torch.from_numpy(img), target, height, width 
開發者ID:soo89,項目名稱:CSD-SSD,代碼行數:21,代碼來源:voc0712.py

示例12: pull_anno

# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def pull_anno(self, index):
        '''Returns the original annotation of image at index

        Note: not using self.__getitem__(), as any transformations passed in
        could mess up this functionality.

        Argument:
            index (int): index of img to get annotation of
        Return:
            list:  [img_id, [(label, bbox coords),...]]
                eg: ('001718', [('dog', (96, 13, 438, 332))])
        '''
        img_id = self.ids[index]
        anno = ET.parse(self._annopath % img_id).getroot()
        gt = self.target_transform(anno, 1, 1)
        return img_id[1], gt 
開發者ID:soo89,項目名稱:CSD-SSD,代碼行數:18,代碼來源:voc0712.py

示例13: pull_item

# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def pull_item(self, index):
        img_id = self.ids[index]

        target = ET.parse(self._annopath % img_id).getroot()
        img = cv2.imread(self._imgpath % img_id)
        height, width, channels = img.shape

        if self.target_transform is not None:
            target = self.target_transform(target, width, height)

        if self.transform is not None:
            target = np.array(target)
            img, boxes, labels = self.transform(img, target[:, :4], target[:, 4])
            # to rgb
            img = img[:, :, (2, 1, 0)]
            # img = img.transpose(2, 0, 1)
            target = np.hstack((boxes, np.expand_dims(labels, axis=1)))

        if(img_id[0][(len(img_id[0]) - 7):]=='VOC2007'):
            semi = np.array([1])
        else:
            semi = np.array([0])
            target = np.zeros([1, 5])
        return torch.from_numpy(img).permute(2, 0, 1), target, height, width, semi
        # return torch.from_numpy(img), target, height, width 
開發者ID:soo89,項目名稱:CSD-SSD,代碼行數:27,代碼來源:voc07_consistency_init.py

示例14: parse_rec

# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def parse_rec(filename):
    """ Parse a PASCAL VOC xml file """
    tree = ET.parse(filename)
    objects = []
    for obj in tree.findall('object'):
        obj_struct = {}
        obj_struct['name'] = obj.find('name').text
        obj_struct['pose'] = obj.find('pose').text
        obj_struct['truncated'] = int(obj.find('truncated').text)
        obj_struct['difficult'] = int(obj.find('difficult').text)
        bbox = obj.find('bndbox')
        obj_struct['bbox'] = [int(bbox.find('xmin').text) - 1,
                              int(bbox.find('ymin').text) - 1,
                              int(bbox.find('xmax').text) - 1,
                              int(bbox.find('ymax').text) - 1]
        objects.append(obj_struct)

    return objects 
開發者ID:soo89,項目名稱:CSD-SSD,代碼行數:20,代碼來源:eval512.py

示例15: _tagged_to_parse

# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def _tagged_to_parse(self, tagged_tokens):
        """
        Convert a list of tagged tokens to a chunk-parse tree.
        """
        sent = Tree('S', [])

        for (tok,tag) in tagged_tokens:
            if tag == 'O':
                sent.append(tok)
            elif tag.startswith('B-'):
                sent.append(Tree(tag[2:], [tok]))
            elif tag.startswith('I-'):
                if (sent and isinstance(sent[-1], Tree) and
                    sent[-1].label() == tag[2:]):
                    sent[-1].append(tok)
                else:
                    sent.append(Tree(tag[2:], [tok]))
        return sent 
開發者ID:rafasashi,項目名稱:razzy-spinner,代碼行數:20,代碼來源:named_entity.py


注:本文中的xml.etree.ElementTree.parse方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。