本文整理匯總了Python中xml.etree.ElementTree.parse方法的典型用法代碼示例。如果您正苦於以下問題:Python ElementTree.parse方法的具體用法?Python ElementTree.parse怎麽用?Python ElementTree.parse使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類xml.etree.ElementTree
的用法示例。
在下文中一共展示了ElementTree.parse方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: parse_rec
# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def parse_rec(filename):
""" Parse a PASCAL VOC xml file """
tree = ET.parse(filename)
objects = []
for obj in tree.findall('object'):
obj_struct = {}
obj_struct['name'] = obj.find('name').text
obj_struct['pose'] = obj.find('pose').text
obj_struct['truncated'] = int(obj.find('truncated').text)
obj_struct['difficult'] = int(obj.find('difficult').text)
bbox = obj.find('bndbox')
obj_struct['bbox'] = [int(bbox.find('xmin').text),
int(bbox.find('ymin').text),
int(bbox.find('xmax').text),
int(bbox.find('ymax').text)]
objects.append(obj_struct)
return objects
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:20,代碼來源:dis_eval.py
示例2: parse_rec
# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def parse_rec(filename):
""" Parse a PASCAL VOC xml file """
tree = ET.parse(filename)
objects = []
for obj in tree.findall('object'):
obj_struct = {}
obj_struct['name'] = obj.find('name').text
obj_struct['pose'] = obj.find('pose').text
obj_struct['truncated'] = int(obj.find('truncated').text)
obj_struct['difficult'] = int(obj.find('difficult').text)
bbox = obj.find('bndbox')
obj_struct['bbox'] = [int(bbox.find('xmin').text),
int(bbox.find('ymin').text),
int(bbox.find('xmax').text),
int(bbox.find('ymax').text)]
objects.append(obj_struct)
return objects
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:20,代碼來源:voc_eval.py
示例3: get_subset_by_classes
# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def get_subset_by_classes(self):
"""Filter imgs by user-defined categories."""
subset_data_infos = []
for data_info in self.data_infos:
img_id = data_info['id']
xml_path = osp.join(self.img_prefix, 'Annotations',
f'{img_id}.xml')
tree = ET.parse(xml_path)
root = tree.getroot()
for obj in root.findall('object'):
name = obj.find('name').text
if name in self.CLASSES:
subset_data_infos.append(data_info)
break
return subset_data_infos
示例4: get_cat_ids
# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def get_cat_ids(self, idx):
"""Get category ids in XML file by index.
Args:
idx (int): Index of data.
Returns:
list[int]: All categories in the image of specified index.
"""
cat_ids = []
img_id = self.data_infos[idx]['id']
xml_path = osp.join(self.img_prefix, 'Annotations', f'{img_id}.xml')
tree = ET.parse(xml_path)
root = tree.getroot()
for obj in root.findall('object'):
name = obj.find('name').text
if name not in self.CLASSES:
continue
label = self.cat2label[name]
cat_ids.append(label)
return cat_ids
示例5: parse_voc_rec
# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def parse_voc_rec(filename):
"""
parse pascal voc record into a dictionary
:param filename: xml file path
:return: list of dict
"""
import xml.etree.ElementTree as ET
tree = ET.parse(filename)
objects = []
for obj in tree.findall('object'):
obj_dict = dict()
obj_dict['name'] = obj.find('name').text
obj_dict['difficult'] = int(obj.find('difficult').text)
bbox = obj.find('bndbox')
obj_dict['bbox'] = [int(bbox.find('xmin').text),
int(bbox.find('ymin').text),
int(bbox.find('xmax').text),
int(bbox.find('ymax').text)]
objects.append(obj_dict)
return objects
示例6: _parse_voc_anno
# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def _parse_voc_anno(filename):
import xml.etree.ElementTree as ET
tree = ET.parse(filename)
height = int(tree.find('size').find('height').text)
width = int(tree.find('size').find('width').text)
objects = []
for obj in tree.findall('object'):
obj_dict = dict()
obj_dict['name'] = obj.find('name').text
obj_dict['difficult'] = int(obj.find('difficult').text)
bbox = obj.find('bndbox')
obj_dict['bbox'] = [int(float(bbox.find('xmin').text)),
int(float(bbox.find('ymin').text)),
int(float(bbox.find('xmax').text)),
int(float(bbox.find('ymax').text))]
objects.append(obj_dict)
return height, width, objects
示例7: parse_rec
# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def parse_rec(filename):
""" Parse a PASCAL VOC xml file """
tree = ET.parse(filename)
objects = []
for obj in tree.findall('object'):
obj_struct = {}
obj_struct['name'] = obj.find('name').text
obj_struct['pose'] = obj.find('pose').text
obj_struct['truncated'] = int(obj.find('truncated').text)
obj_struct['difficult'] = int(obj.find('difficult').text)
bbox = obj.find('bndbox')
obj_struct['bbox'] = [int(bbox.find('xmin').text),
int(bbox.find('ymin').text),
int(bbox.find('xmax').text),
int(bbox.find('ymax').text)]
objects.append(obj_struct)
return objects
示例8: parse_labelme_poly
# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def parse_labelme_poly(filename):
""" Parse a labelme xml file """
tree = ET.parse(filename)
objects = []
for obj in tree.findall('object'):
obj_struct = {}
obj_struct['name'] = obj.find('name').text
obj_struct['deleted'] = obj.find('deleted').text
obj_struct['verified'] = int(obj.find('verified').text)
obj_struct['occluded'] = obj.find('occluded').text
obj_struct['attributes'] = obj.find('attributes').text
poly = obj.find('polygon').findall('pt')
obj_struct['polygon'] = []
for point in poly:
pt = [point.find('x').text, point.find('y').text]
obj_struct['polygon'] = obj_struct['polygon'] + pt
objects.append(obj_struct)
return objects
示例9: __init__
# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def __init__(self, fname):
"""
Loads a mujoco xml from file.
Args:
fname (str): path to the MJCF xml file.
"""
self.file = fname
self.folder = os.path.dirname(fname)
self.tree = ET.parse(fname)
self.root = self.tree.getroot()
self.name = self.root.get("model")
self.worldbody = self.create_default_element("worldbody")
self.actuator = self.create_default_element("actuator")
self.asset = self.create_default_element("asset")
self.equality = self.create_default_element("equality")
self.contact = self.create_default_element("contact")
self.default = self.create_default_element("default")
self.resolve_asset_dependency()
示例10: __getitem__
# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def __getitem__(self, item):
id = self.ids[item]
image_path = os.path.join(self.data_path, "JPEGImages", "{}.jpg".format(id))
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_xml_path = os.path.join(self.data_path, "Annotations", "{}.xml".format(id))
annot = ET.parse(image_xml_path)
objects = []
for obj in annot.findall('object'):
xmin, xmax, ymin, ymax = [int(obj.find('bndbox').find(tag).text) - 1 for tag in
["xmin", "xmax", "ymin", "ymax"]]
label = self.classes.index(obj.find('name').text.lower().strip())
objects.append([xmin, ymin, xmax, ymax, label])
if self.is_training:
transformations = Compose([HSVAdjust(), VerticalFlip(), Crop(), Resize(self.image_size)])
else:
transformations = Compose([Resize(self.image_size)])
image, objects = transformations((image, objects))
return np.transpose(np.array(image, dtype=np.float32), (2, 0, 1)), np.array(objects, dtype=np.float32)
示例11: pull_item
# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def pull_item(self, index):
img_id = self.ids[index]
target = ET.parse(self._annopath % img_id).getroot()
img = cv2.imread(self._imgpath % img_id)
height, width, channels = img.shape
if self.target_transform is not None:
target = self.target_transform(target, width, height)
if self.transform is not None:
target = np.array(target)
img, boxes, labels = self.transform(img, target[:, :4], target[:, 4])
# to rgb
img = img[:, :, (2, 1, 0)]
# img = img.transpose(2, 0, 1)
target = np.hstack((boxes, np.expand_dims(labels, axis=1)))
return torch.from_numpy(img).permute(2, 0, 1), target, height, width
# return torch.from_numpy(img), target, height, width
示例12: pull_anno
# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def pull_anno(self, index):
'''Returns the original annotation of image at index
Note: not using self.__getitem__(), as any transformations passed in
could mess up this functionality.
Argument:
index (int): index of img to get annotation of
Return:
list: [img_id, [(label, bbox coords),...]]
eg: ('001718', [('dog', (96, 13, 438, 332))])
'''
img_id = self.ids[index]
anno = ET.parse(self._annopath % img_id).getroot()
gt = self.target_transform(anno, 1, 1)
return img_id[1], gt
示例13: pull_item
# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def pull_item(self, index):
img_id = self.ids[index]
target = ET.parse(self._annopath % img_id).getroot()
img = cv2.imread(self._imgpath % img_id)
height, width, channels = img.shape
if self.target_transform is not None:
target = self.target_transform(target, width, height)
if self.transform is not None:
target = np.array(target)
img, boxes, labels = self.transform(img, target[:, :4], target[:, 4])
# to rgb
img = img[:, :, (2, 1, 0)]
# img = img.transpose(2, 0, 1)
target = np.hstack((boxes, np.expand_dims(labels, axis=1)))
if(img_id[0][(len(img_id[0]) - 7):]=='VOC2007'):
semi = np.array([1])
else:
semi = np.array([0])
target = np.zeros([1, 5])
return torch.from_numpy(img).permute(2, 0, 1), target, height, width, semi
# return torch.from_numpy(img), target, height, width
示例14: parse_rec
# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def parse_rec(filename):
""" Parse a PASCAL VOC xml file """
tree = ET.parse(filename)
objects = []
for obj in tree.findall('object'):
obj_struct = {}
obj_struct['name'] = obj.find('name').text
obj_struct['pose'] = obj.find('pose').text
obj_struct['truncated'] = int(obj.find('truncated').text)
obj_struct['difficult'] = int(obj.find('difficult').text)
bbox = obj.find('bndbox')
obj_struct['bbox'] = [int(bbox.find('xmin').text) - 1,
int(bbox.find('ymin').text) - 1,
int(bbox.find('xmax').text) - 1,
int(bbox.find('ymax').text) - 1]
objects.append(obj_struct)
return objects
示例15: _tagged_to_parse
# 需要導入模塊: from xml.etree import ElementTree [as 別名]
# 或者: from xml.etree.ElementTree import parse [as 別名]
def _tagged_to_parse(self, tagged_tokens):
"""
Convert a list of tagged tokens to a chunk-parse tree.
"""
sent = Tree('S', [])
for (tok,tag) in tagged_tokens:
if tag == 'O':
sent.append(tok)
elif tag.startswith('B-'):
sent.append(Tree(tag[2:], [tok]))
elif tag.startswith('I-'):
if (sent and isinstance(sent[-1], Tree) and
sent[-1].label() == tag[2:]):
sent[-1].append(tok)
else:
sent.append(Tree(tag[2:], [tok]))
return sent