當前位置: 首頁>>代碼示例>>Python>>正文


Python xgboost.train方法代碼示例

本文整理匯總了Python中xgboost.train方法的典型用法代碼示例。如果您正苦於以下問題:Python xgboost.train方法的具體用法?Python xgboost.train怎麽用?Python xgboost.train使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在xgboost的用法示例。


在下文中一共展示了xgboost.train方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fit

# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import train [as 別名]
def fit(self):
        """
        Gets data and preprocess by prepare_data() function
        Trains with the selected parameters from grid search and saves the model
        """
        data = self.get_input()
        df_train, df_test = self.prepare_data(data)
        xtr, ytr = df_train.drop(['Value'], axis=1), df_train['Value'].values

        xgbtrain = xgb.DMatrix(xtr, ytr)
        reg_cv = self.grid_search(xtr, ytr)
        param = reg_cv.best_params_
        bst = xgb.train(dtrain=xgbtrain, params=param)

        # save model to file
        mlflow.sklearn.save_model(bst, "model")
        return df_test 
開發者ID:produvia,項目名稱:ai-platform,代碼行數:19,代碼來源:runner.py

示例2: fit

# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import train [as 別名]
def fit(self, X, y, X_valid, y_valid):
        logger.info('XGBoost, train data shape        {}'.format(X.shape))
        logger.info('XGBoost, validation data shape   {}'.format(X_valid.shape))
        logger.info('XGBoost, train labels shape      {}'.format(y.shape))
        logger.info('XGBoost, validation labels shape {}'.format(y_valid.shape))

        train = xgb.DMatrix(data=X,
                            label=y,
                            **self.dmatrix_parameters)
        valid = xgb.DMatrix(data=X_valid,
                            label=y_valid,
                            **self.dmatrix_parameters)
        self.estimator = xgb.train(params=self.booster_parameters,
                                   dtrain=train,
                                   evals=[(train, 'train'), (valid, 'valid')],
                                   **self.training_parameters)
        return self 
開發者ID:minerva-ml,項目名稱:steppy-toolkit,代碼行數:19,代碼來源:models.py

示例3: train

# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import train [as 別名]
def train(params, dtrain, evals=(), **kwargs):
    """
    Train XGBoost model in Mars manner.

    Parameters
    ----------
    Parameters are the same as `xgboost.train`.

    Returns
    -------
    results: Booster
    """

    evals_result = kwargs.pop('evals_result', dict())
    session = kwargs.pop('session', None)
    run_kwargs = kwargs.pop('run_kwargs', dict())
    op = XGBTrain(params=params, dtrain=dtrain, evals=evals, kwargs=kwargs)
    t = op()
    ret = t.execute(session=session, **run_kwargs).fetch(session=session)
    evals_result.update(ret['history'])
    bst = pickle.loads(ret['booster'])
    num_class = params.get('num_class')
    if num_class:
        bst.set_attr(num_class=str(num_class))
    return bst 
開發者ID:mars-project,項目名稱:mars,代碼行數:27,代碼來源:train.py

示例4: do_run

# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import train [as 別名]
def do_run(self, train, predict, window):
        LabelColumnName = 'label'
        data_file = "data_file_xgboost_" + str(window) + ".pkl"

        if os.path.exists(data_file):
            input = open(data_file, 'rb')
            data_feature = pickle.load(input)
            input.close()
        else:
            data_feature = get_all_stocks_feature_data(self.paras, window, LabelColumnName)
            output = open(data_file, 'wb')
            pickle.dump(data_feature, output)
            output.close()

        model = None

        train_feature = {}
            
        if train: model = self.train_data(data_feature, window, LabelColumnName)
            
        if predict: self.predict_data(model, data_feature, window, LabelColumnName) 
開發者ID:doncat99,項目名稱:StockRecommendSystem,代碼行數:23,代碼來源:Stock_Prediction_Model_XgBoost.py

示例5: train_lgb

# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import train [as 別名]
def train_lgb(train_features, train_y, valid_features, valid_y, *,
              lr, num_boost_round):
    train_data = lgb.Dataset(train_features, train_y)
    valid_data = lgb.Dataset(valid_features, valid_y, reference=train_data)
    params = {
        'objective': 'binary',
        'metric': 'binary_logloss',
        'learning_rate': lr,
        'bagging_fraction': 0.8,
        'bagging_freq': 5,
        'feature_fraction': 0.9,
        'min_data_in_leaf': 20,
        'num_leaves': 41,
        'scale_pos_weight': 1.2,
        'lambda_l2': 1,
    }
    print(params)
    return lgb.train(
        params=params,
        train_set=train_data,
        num_boost_round=num_boost_round,
        early_stopping_rounds=20,
        valid_sets=[valid_data],
        verbose_eval=10,
    ) 
開發者ID:lopuhin,項目名稱:kaggle-kuzushiji-2019,代碼行數:27,代碼來源:level2.py

示例6: train_xgb

# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import train [as 別名]
def train_xgb(train_features, train_y, valid_features, valid_y, *,
              eta, num_boost_round):
    train_data = xgb.DMatrix(train_features, label=train_y)
    valid_data = xgb.DMatrix(valid_features, label=valid_y)
    params = {
        'eta': eta,
        'objective': 'binary:logistic',
        'gamma': 0.01,
        'max_depth': 8,
    }
    print(params)
    eval_list = [(valid_data, 'eval')]
    return xgb.train(
        params, train_data, num_boost_round, eval_list,
        early_stopping_rounds=20,
        verbose_eval=10,
    ) 
開發者ID:lopuhin,項目名稱:kaggle-kuzushiji-2019,代碼行數:19,代碼來源:level2.py

示例7: test_train_model

# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import train [as 別名]
def test_train_model():
    """
    test xgboost train in a single machine
    :return: trained model
    """
    rank = 1
    world_size = 10
    place = "/tmp/data"
    dmatrix = read_train_data(rank, world_size, place)

    param_xgboost_default = {'max_depth': 2, 'eta': 1, 'silent': 1,
                             'objective': 'multi:softprob', 'num_class': 3}

    booster = xgb.train(param_xgboost_default, dtrain=dmatrix)

    assert booster is not None

    return booster 
開發者ID:kubeflow,項目名稱:xgboost-operator,代碼行數:20,代碼來源:local_test.py

示例8: test_model_predict

# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import train [as 別名]
def test_model_predict(booster):
    """
    test xgboost train in the single node
    :return: true if pass the test
    """
    rank = 1
    world_size = 10
    place = "/tmp/data"
    dmatrix, y_test = read_predict_data(rank, world_size, place)

    preds = booster.predict(dmatrix)
    best_preds = np.asarray([np.argmax(line) for line in preds])
    score = precision_score(y_test, best_preds, average='macro')

    assert score > 0.99

    logging.info("Predict accuracy: %f", score)

    return True 
開發者ID:kubeflow,項目名稱:xgboost-operator,代碼行數:21,代碼來源:local_test.py

示例9: fit

# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import train [as 別名]
def fit(self, X, y, x_val=None, y_val=None):

        dtrain = xgb.DMatrix(X, label=y)
        if x_val is not None:
            dtest = xgb.DMatrix(x_val, label=y_val)
            watchlist = [(dtrain, 'train'), (dtest, 'validation')]
            self.clf = xgb.train(params=self.params,
                                 dtrain=dtrain,
                                 num_boost_round=self.num_round,
                                 early_stopping_rounds=self.early_stopping_rounds,
                                 evals=watchlist,
                                 verbose_eval=self.verbose)
        else:
            self.clf = xgb.train(params=self.params,
                                 dtrain=dtrain,
                                 num_boost_round=self.num_round,
                                 early_stopping_rounds=self.early_stopping_rounds)
        return 
開發者ID:mpearmain,項目名稱:gestalt,代碼行數:20,代碼來源:wrap_xgb.py

示例10: setUpClass

# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import train [as 別名]
def setUpClass(self):
        if not _HAS_XGBOOST:
            return
        if not _HAS_SKLEARN:
            return

        # Load data and train model
        scikit_data = load_boston()
        self.X = scikit_data.data.astype("f").astype("d")
        self.dtrain = xgboost.DMatrix(
            scikit_data.data,
            label=scikit_data.target,
            feature_names=scikit_data.feature_names,
        )
        self.feature_names = scikit_data.feature_names
        self.output_name = "target" 
開發者ID:apple,項目名稱:coremltools,代碼行數:18,代碼來源:test_boosted_trees_regression_numeric.py

示例11: _train_convert_evaluate_assert

# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import train [as 別名]
def _train_convert_evaluate_assert(self, bt_params={}, **params):
        """
        Set up the unit test by loading the dataset and training a model.
        """
        # Train a model
        xgb_model = xgboost.train(bt_params, self.dtrain, **params)

        # Convert the model
        spec = xgb_converter.convert(
            xgb_model, self.feature_names, self.output_name, force_32bit_float=False
        )

        if _is_macos() and _macos_version() >= (10, 13):
            # Get predictions
            df = pd.DataFrame(self.X, columns=self.feature_names)
            df["prediction"] = xgb_model.predict(self.dtrain)

            # Evaluate it
            metrics = evaluate_regressor(spec, df, target="target", verbose=False)
            self._check_metrics(metrics, bt_params) 
開發者ID:apple,項目名稱:coremltools,代碼行數:22,代碼來源:test_boosted_trees_regression_numeric.py

示例12: setUpClass

# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import train [as 別名]
def setUpClass(self):
        """
        Set up the unit test by loading the dataset and training a model.
        """
        if not _HAS_XGBOOST:
            return
        if not _HAS_SKLEARN:
            return

        scikit_data = load_boston()
        dtrain = xgboost.DMatrix(
            scikit_data.data,
            label=scikit_data.target,
            feature_names=scikit_data.feature_names,
        )
        xgb_model = xgboost.train({}, dtrain, 1)

        # Save the data and the model
        self.scikit_data = scikit_data
        self.xgb_model = xgb_model
        self.feature_names = self.scikit_data.feature_names 
開發者ID:apple,項目名稱:coremltools,代碼行數:23,代碼來源:test_boosted_trees_regression.py

示例13: evaluate

# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import train [as 別名]
def evaluate(features):
    dtrain = xgb.DMatrix(tr_x[features], label=tr_y)
    dvalid = xgb.DMatrix(va_x[features], label=va_y)
    params = {'objective': 'binary:logistic', 'silent': 1, 'random_state': 71}
    num_round = 10  # 実際にはもっと多いround數が必要
    early_stopping_rounds = 3
    watchlist = [(dtrain, 'train'), (dvalid, 'eval')]
    model = xgb.train(params, dtrain, num_round,
                      evals=watchlist, early_stopping_rounds=early_stopping_rounds,
                      verbose_eval=0)
    va_pred = model.predict(dvalid)
    score = log_loss(va_y, va_pred)

    return score


# ---------------------------------
# Greedy Forward Selection
# ---------------------------------- 
開發者ID:ghmagazine,項目名稱:kagglebook,代碼行數:21,代碼來源:ch06-06-wrapper.py

示例14: train

# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import train [as 別名]
def train(self, tr_x, tr_y, va_x=None, va_y=None):

        # データのセット
        validation = va_x is not None
        dtrain = xgb.DMatrix(tr_x, label=tr_y)
        if validation:
            dvalid = xgb.DMatrix(va_x, label=va_y)

        # ハイパーパラメータの設定
        params = dict(self.params)
        num_round = params.pop('num_round')

        # 學習
        if validation:
            early_stopping_rounds = params.pop('early_stopping_rounds')
            watchlist = [(dtrain, 'train'), (dvalid, 'eval')]
            self.model = xgb.train(params, dtrain, num_round, evals=watchlist,
                                   early_stopping_rounds=early_stopping_rounds)
        else:
            watchlist = [(dtrain, 'train')]
            self.model = xgb.train(params, dtrain, num_round, evals=watchlist) 
開發者ID:ghmagazine,項目名稱:kagglebook,代碼行數:23,代碼來源:model_xgb.py

示例15: train_model

# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import train [as 別名]
def train_model(self, x_train, y_train, x_val, y_val):
        print("Will train XGB for {} rounds, RandomSeed: {}".format(self.rounds, self.params['seed']))

        xg_train = xgb.DMatrix(x_train, label=y_train)

        if y_val is None:
            watchlist = [(xg_train, 'train')]
            model = xgb.train(self.params, xg_train, self.rounds, watchlist)
        else:
            early_stop = self.rounds if self.early_stop == 0 else self.early_stop
            xg_val = xgb.DMatrix(x_val, label=y_val)
            watchlist = [(xg_train, 'train'), (xg_val, 'eval')]
            model = xgb.train(self.params, xg_train, self.rounds, watchlist, early_stopping_rounds=early_stop)

        self.steps = model.best_iteration
        return model 
開發者ID:jeffheaton,項目名稱:jh-kaggle-util,代碼行數:18,代碼來源:train_xgboost.py


注:本文中的xgboost.train方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。