本文整理匯總了Python中xgboost.XGBClassifier方法的典型用法代碼示例。如果您正苦於以下問題:Python xgboost.XGBClassifier方法的具體用法?Python xgboost.XGBClassifier怎麽用?Python xgboost.XGBClassifier使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類xgboost
的用法示例。
在下文中一共展示了xgboost.XGBClassifier方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: Train
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import XGBClassifier [as 別名]
def Train(data, modelcount, censhu, yanzhgdata):
model = xgb.XGBClassifier(max_depth=censhu, learning_rate=0.1, n_estimators=modelcount,
silent=True, objective='binary:logistic', booster='gbtree')
model.fit(data[:, :-1], data[:, -1])
# 給出訓練數據的預測值
train_out = model.predict(data[:, :-1])
# 計算MSE
train_mse = fmse(data[:, -1], train_out)[0]
# 給出驗證數據的預測值
add_yan = model.predict(yanzhgdata[:, :-1])
# 計算f1度量
add_mse = fmse(yanzhgdata[:, -1], add_yan)[0]
print(train_mse, add_mse)
return train_mse, add_mse
# 最終確定組合的函數
示例2: recspre
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import XGBClassifier [as 別名]
def recspre(estrs, predata, datadict, zhe):
mo, ze = estrs.split('-')
model = xgb.XGBClassifier(max_depth=int(ze), learning_rate=0.1, n_estimators=int(mo),
silent=True, objective='binary:logistic', booster='gbtree')
model.fit(datadict[zhe]['train'][:, :-1], datadict[zhe]['train'][:, -1])
# 預測
yucede = model.predict(predata[:, :-1])
# 計算混淆矩陣
print(ConfuseMatrix(predata[:, -1], yucede))
return fmse(predata[:, -1], yucede)
# 主函數
示例3: __init__
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import XGBClassifier [as 別名]
def __init__(self):
self._models = dict()
try:
import sklearn.ensemble
self._models['RandomForestClassifier'] = sklearn.ensemble.RandomForestClassifier
except ImportError:
pass
try:
import xgboost
self._models['XGBClassifier'] = xgboost.XGBClassifier
except ImportError:
pass
try:
import lightgbm
self._models['LGBMClassifier'] = lightgbm.LGBMClassifier
except ImportError:
pass
try:
import catboost
self._models['CatBoostClassifier'] = catboost.CatBoostClassifier
except ImportError:
pass
示例4: __call__
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import XGBClassifier [as 別名]
def __call__(self, estimator):
fitted_estimator = estimator.fit(self.X_train, self.y_train)
if isinstance(estimator, (LinearClassifierMixin, SVC, NuSVC,
LightBaseClassifier)):
y_pred = estimator.decision_function(self.X_test)
elif isinstance(estimator, DecisionTreeClassifier):
y_pred = estimator.predict_proba(self.X_test.astype(np.float32))
elif isinstance(
estimator,
(ForestClassifier, XGBClassifier, LGBMClassifier)):
y_pred = estimator.predict_proba(self.X_test)
else:
y_pred = estimator.predict(self.X_test)
return self.X_test, y_pred, fitted_estimator
示例5: test_01_xgb_classifier
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import XGBClassifier [as 別名]
def test_01_xgb_classifier(self):
print("\ntest 01 (xgb classifier with preprocessing) [multi-class]\n")
model = XGBClassifier()
pipeline_obj = Pipeline([
('scaler',MaxAbsScaler()),
("model", model)
])
pipeline_obj.fit(self.X,self.Y)
file_name = "test01xgboost.pmml"
xgboost_to_pmml(pipeline_obj, self.features, 'Species', file_name)
model_name = self.adapa_utility.upload_to_zserver(file_name)
predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, self.test_file)
model_pred = pipeline_obj.predict(self.X)
model_prob = pipeline_obj.predict_proba(self.X)
self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True)
self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True)
示例6: test_03_xgb_classifier
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import XGBClassifier [as 別名]
def test_03_xgb_classifier(self):
print("\ntest 03 (xgb classifier with preprocessing) [binary-class]\n")
model = XGBClassifier()
pipeline_obj = Pipeline([
('scaler',MinMaxScaler()),
("model", model)
])
pipeline_obj.fit(self.X,self.Y_bin)
file_name = "test03xgboost.pmml"
xgboost_to_pmml(pipeline_obj, self.features, 'Species', file_name)
model_name = self.adapa_utility.upload_to_zserver(file_name)
predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, self.test_file)
model_pred = pipeline_obj.predict(self.X)
model_prob = pipeline_obj.predict_proba(self.X)
self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True)
self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True)
示例7: _build_classifier
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import XGBClassifier [as 別名]
def _build_classifier(self, n_estimators, min_child_weight, max_depth, gamma, subsample, colsample_bytree, num_class):
assert num_class >= 2
if num_class == 2:
clf = xgb.XGBClassifier(
n_estimators=n_estimators,
min_child_weight=min_child_weight,
max_depth=max_depth,
gamma=gamma,
subsample=subsample,
colsample_bytree=colsample_bytree
)
else:
clf = xgb.XGBClassifier(
n_estimators=n_estimators,
min_child_weight=min_child_weight,
max_depth=max_depth,
gamma=gamma,
subsample=subsample,
colsample_bytree=colsample_bytree,
objective='multi:softmax',
num_class=num_class
)
return clf
示例8: _train_convert_evaluate_assert
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import XGBClassifier [as 別名]
def _train_convert_evaluate_assert(self, **xgboost_params):
"""
Train a scikit-learn model, convert it and then evaluate it with CoreML
"""
xgb_model = xgboost.XGBClassifier(**xgboost_params)
xgb_model.fit(self.X, self.target)
# Convert the model
spec = xgb_converter.convert(
xgb_model, self.feature_names, self.output_name, mode="classifier"
)
if _is_macos() and _macos_version() >= (10, 13):
# Get predictions
df = pd.DataFrame(self.X, columns=self.feature_names)
probabilities = xgb_model.predict_proba(self.X)
df["classProbability"] = [
dict(zip(xgb_model.classes_, cur_vals)) for cur_vals in probabilities
]
metrics = evaluate_classifier_with_probabilities(
spec, df, probabilities="classProbability", verbose=False
)
self.assertEquals(metrics["num_key_mismatch"], 0)
self.assertLess(metrics["max_probability_error"], 1e-3)
示例9: test_compute_and_plot
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import XGBClassifier [as 別名]
def test_compute_and_plot(self):
rows = 20
X = np.random.rand(rows, 3)
X = pd.DataFrame(X, columns=[f"f{i}" for i in range(3)])
y = np.random.randint(0, 2, rows)
model = XGBClassifier(n_estimators=1, max_depth=2)
model.fit(X, y)
with tempfile.TemporaryDirectory() as tmpdir:
PermutationImportance.compute_and_plot(
model,
X_validation=X,
y_validation=y,
model_file_path=tmpdir,
learner_name="learner_test",
metric_name=None,
ml_task="binary_classification",
)
self.assertTrue(
os.path.exists(os.path.join(tmpdir, "learner_test_importance.csv"))
)
示例10: classifier
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import XGBClassifier [as 別名]
def classifier(self, c):
"""Validate the classifier property and set default parameters.
Args:
c (classifier): if None, implement the xgboost classifier
Raises:
ValueError: classifier does not implement `predict_proba`
"""
if c is None:
self._classifier = XGBClassifier()
else:
m = "predict_proba"
if not hasattr(c, m):
raise ValueError(f"Classifier must implement {m} method.")
self._classifier = c
示例11: execute
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import XGBClassifier [as 別名]
def execute():
env = Environment(
train_dataset=get_toy_classification_data(),
results_path="HyperparameterHunterAssets",
metrics=["roc_auc_score"],
cv_type=RepeatedStratifiedKFold,
cv_params=dict(n_splits=5, n_repeats=2, random_state=32),
runs=2,
# Just instantiate `Environment` with your list of callbacks, and go about business as usual
experiment_callbacks=[printer_callback(), confusion_matrix_oof()],
# In addition to `printer_callback` made above, we're also adding the `confusion_matrix_oof` callback
# This, and other callbacks, can be found in `hyperparameter_hunter.callbacks.recipes`
)
experiment = CVExperiment(
model_initializer=XGBClassifier,
model_init_params={},
model_extra_params=dict(fit=dict(verbose=False)),
)
示例12: do_optimization
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import XGBClassifier [as 別名]
def do_optimization():
optimizer = BayesianOptPro(iterations=5, random_state=1337)
optimizer.forge_experiment(
model_initializer=XGBClassifier,
model_init_params=dict(
objective="reg:linear",
max_depth=Integer(2, 20),
learning_rate=Real(0.0001, 0.5),
subsample=0.5,
booster=Categorical(["gbtree", "dart"]),
),
)
optimizer.go()
# We'll start with a normal `Environment` for comparison, using only the `env_kwargs` define above
示例13: opt_xgb_0
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import XGBClassifier [as 別名]
def opt_xgb_0():
optimizer = RandomForestOptPro(iterations=2, random_state=1337)
optimizer.forge_experiment(
model_initializer=XGBClassifier,
model_init_params=dict(
objective="reg:linear",
max_depth=Integer(2, 20),
learning_rate=Real(0.0001, 0.5),
subsample=0.5,
booster=Categorical(["gbtree", "dart"]),
),
)
optimizer.go()
yield optimizer
##################################################
# Test Scenarios
##################################################
示例14: test_sentinels_optimization
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import XGBClassifier [as 別名]
def test_sentinels_optimization(env_0):
optimizer = GBRT(iterations=2)
optimizer.forge_experiment(
model_initializer=XGBClassifier,
model_init_params=dict(objective="reg:linear", max_depth=Integer(2, 20), subsample=0.5),
model_extra_params=dict(
fit=dict(
eval_set=get_all_sentinels(env_0),
early_stopping_rounds=5,
eval_metric=Categorical(["auc", "mae"]),
)
),
)
optimizer.go()
##################################################
# General Sentinel Scenarios
##################################################
示例15: test_xgboost_classification
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import XGBClassifier [as 別名]
def test_xgboost_classification(self):
"""Test that sklearn models can learn on simple classification datasets."""
import xgboost
np.random.seed(123)
dataset = sklearn.datasets.load_digits(n_class=2)
X, y = dataset.data, dataset.target
frac_train = .7
n_samples = len(X)
n_train = int(frac_train * n_samples)
X_train, y_train = X[:n_train], y[:n_train]
X_test, y_test = X[n_train:], y[n_train:]
train_dataset = dc.data.NumpyDataset(X_train, y_train)
test_dataset = dc.data.NumpyDataset(X_test, y_test)
classification_metric = dc.metrics.Metric(dc.metrics.roc_auc_score)
esr = {'early_stopping_rounds': 50}
xgb_model = xgboost.XGBClassifier(n_estimators=50, seed=123)
model = dc.models.XGBoostModel(xgb_model, verbose=False, **esr)
# Fit trained model
model.fit(train_dataset)
model.save()
# Eval model on test
scores = model.evaluate(test_dataset, [classification_metric])
assert scores[classification_metric.name] > .9