本文整理匯總了Python中xgboost.Booster方法的典型用法代碼示例。如果您正苦於以下問題:Python xgboost.Booster方法的具體用法?Python xgboost.Booster怎麽用?Python xgboost.Booster使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類xgboost
的用法示例。
在下文中一共展示了xgboost.Booster方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_loaded_booster
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import Booster [as 別名]
def get_loaded_booster(model_dir):
model_files = (data_file for data_file in os.listdir(model_dir)
if os.path.isfile(os.path.join(model_dir, data_file)))
model_file = next(model_files)
try:
booster = pkl.load(open(os.path.join(model_dir, model_file), 'rb'))
format = PKL_FORMAT
except Exception as exp_pkl:
try:
booster = xgb.Booster()
booster.load_model(os.path.join(model_dir, model_file))
format = XGB_FORMAT
except Exception as exp_xgb:
raise RuntimeError("Model at {} cannot be loaded:\n{}\n{}".format(model_dir, str(exp_pkl), str(exp_xgb)))
booster.set_param('nthread', 1)
return booster, format
示例2: predict
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import Booster [as 別名]
def predict(model, data, session=None, run_kwargs=None, run=True):
from xgboost import Booster
data = check_data(data)
if not isinstance(model, Booster):
raise TypeError('model has to be a xgboost.Booster, got {0} instead'.format(type(model)))
num_class = model.attr('num_class')
if isinstance(data, TENSOR_TYPE):
output_types = [OutputType.tensor]
elif num_class is not None:
output_types = [OutputType.dataframe]
else:
output_types = [OutputType.series]
op = XGBPredict(data=data, model=model, gpu=data.op.gpu, output_types=output_types)
result = op()
if run:
result.execute(session=session, **(run_kwargs or dict()))
return result
示例3: read_model_from_oss
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import Booster [as 別名]
def read_model_from_oss(kw):
"""
helper function to read a model from oss
:param kw: OSS parameter
:return: XGBoost booster model
"""
auth = oss2.Auth(kw['access_id'], kw['access_key'])
bucket = kw['access_bucket']
bkt = oss2.Bucket(auth=auth, endpoint=kw['endpoint'], bucket_name=bucket)
oss_path = kw["path"]
temp_model_fname = os.path.join(tempfile.mkdtemp(), 'local_model')
try:
bkt.get_object_to_file(key=oss_path, filename=temp_model_fname)
logger.info("success to load model from oss %s", oss_path)
except Exception as e:
logging.error("fail to load model: " + e)
raise Exception("fail to load model from oss %s", oss_path)
bst = xgb.Booster({'nthread': 2}) # init model
bst.load_model(temp_model_fname)
return bst
示例4: __init__
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import Booster [as 別名]
def __init__(self, spec, model):
super(_XgboostModelArtifactWrapper, self).__init__(spec)
try:
import xgboost as xgb
except ImportError:
raise MissingDependencyException(
"xgboost package is required to use XgboostModelArtifact"
)
if not isinstance(model, xgb.core.Booster):
raise InvalidArgument(
"Expect `model` argument to be a `xgboost.core.Booster` instance"
)
self._model = model
示例5: _patch_model_io
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import Booster [as 別名]
def _patch_model_io():
if PatchXGBoostModelIO.__patched:
return
if 'xgboost' not in sys.modules:
return
PatchXGBoostModelIO.__patched = True
try:
import xgboost as xgb
bst = xgb.Booster
bst.save_model = _patched_call(bst.save_model, PatchXGBoostModelIO._save)
bst.load_model = _patched_call(bst.load_model, PatchXGBoostModelIO._load)
except ImportError:
pass
except Exception:
pass
示例6: load_model
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import Booster [as 別名]
def load_model(model_uri):
"""
Load an XGBoost model from a local file or a run.
:param model_uri: The location, in URI format, of the MLflow model. For example:
- ``/Users/me/path/to/local/model``
- ``relative/path/to/local/model``
- ``s3://my_bucket/path/to/model``
- ``runs:/<mlflow_run_id>/run-relative/path/to/model``
For more information about supported URI schemes, see
`Referencing Artifacts <https://www.mlflow.org/docs/latest/tracking.html#
artifact-locations>`_.
:return: An XGBoost model (an instance of `xgboost.Booster`_)
"""
local_model_path = _download_artifact_from_uri(artifact_uri=model_uri)
flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME)
xgb_model_file_path = os.path.join(local_model_path, flavor_conf.get("data", "model.xgb"))
return _load_model(path=xgb_model_file_path)
示例7: predict_label
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import Booster [as 別名]
def predict_label(self, X, robot):
bst = xgb.Booster({'nthread': 4}) # init model
bst.load_model('models/{}'.format(robot.model_name)) # load the model
try: # may not work if there are Nones
dtest = xgb.DMatrix(X)
pred = bst.predict(dtest)
label = np.argmax(pred, axis=1)[0] # giving a prediction:
# 0 : nothing
# 1 : long
# 2: short
label_probability = pred[0][int(label)]
except ValueError: # in case it fails
label, label_probability = 0, 1
print('Note: Issue when predicting the value')
return label, label_probability
### Data preparation
示例8: load
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import Booster [as 別名]
def load(self, filepath):
self.estimator = xgb.Booster(params=self.booster_parameters)
self.estimator.load_model(filepath)
return self
示例9: test_train_zero_or_negative_rounds
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import Booster [as 別名]
def test_train_zero_or_negative_rounds(tmpdir, caplog):
X_train = np.random.random(size=(100, 5))
y_train = np.random.random(size=(100, 1))
dtrain = xgb.DMatrix(X_train, label=y_train)
X_test = np.random.random(size=(100, 5))
y_test = np.random.random(size=(100, 1))
dtest = xgb.DMatrix(X_test, label=y_test)
params = {"objective": "binary:logistic"}
train_args = dict(
params=params,
dtrain=dtrain,
num_boost_round=0,
evals=[(dtrain, 'train'), (dtest, 'test')]
)
checkpoint_dir = os.path.join(tmpdir, "test_checkpoints")
bst = checkpointing.train(train_args, checkpoint_dir)
assert isinstance(bst, xgb.Booster)
assert not os.listdir(checkpoint_dir)
train_args["num_boost_round"] = -1
bst = checkpointing.train(train_args, checkpoint_dir)
assert isinstance(bst, xgb.Booster)
assert not os.listdir(checkpoint_dir)
示例10: load_spark_model
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import Booster [as 別名]
def load_spark_model(model_path, metadata_path):
import xgboost as xgb
import json
import numpy as np
if not isinstance(model_path, str) or not isinstance(model_path, str):
raise ValueError("model and metadata paths must be str, not {0} and {1}".format(type(model_path), type(metadata_path)))
with open(metadata_path) as f:
metadata = json.loads(f.read().strip())
xgb_class = metadata.get("class")
if xgb_class == "ml.dmlc.xgboost4j.scala.spark.XGBoostClassificationModel":
clf = xgb.XGBClassifier()
setattr(clf, "base_score", metadata["paramMap"]["baseScore"])
elif xgb_class == "ml.dmlc.xgboost4j.scala.spark.XGBoostRegressionModel":
clf = xgb.XGBRegressor()
else:
raise ValueError("Unsupported model.")
setattr(clf, "objective", metadata["paramMap"]["objective"])
setattr(clf, "missing",
np.nan if metadata["paramMap"]["missing"] in ["NaN", "nan", "null", "None"] else metadata["paramMap"][
"missing"])
setattr(clf, "booster", metadata["paramMap"].get("booster", "gbtree"))
setattr(clf, "n_estimators", metadata["paramMap"].get("numRound", 1))
booster = xgb.Booster()
booster.load_model(model_path)
clf._Booster = booster
return clf
示例11: testLocalPredictTensor
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import Booster [as 別名]
def testLocalPredictTensor(self):
dtrain = MarsDMatrix(self.X, self.y)
booster = train({}, dtrain, num_boost_round=2)
self.assertIsInstance(booster, Booster)
prediction = predict(booster, self.X)
self.assertIsInstance(prediction.to_numpy(), np.ndarray)
prediction = predict(booster, dtrain)
self.assertIsInstance(prediction.fetch(), np.ndarray)
with self.assertRaises(TypeError):
predict(None, self.X)
示例12: testLocalPredictDataFrame
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import Booster [as 別名]
def testLocalPredictDataFrame(self):
dtrain = MarsDMatrix(self.X_df, self.y_series)
booster = train({}, dtrain, num_boost_round=2)
self.assertIsInstance(booster, Booster)
prediction = predict(booster, self.X_df)
self.assertIsInstance(prediction.to_pandas(), pd.Series)
示例13: testLocalTrainTensor
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import Booster [as 別名]
def testLocalTrainTensor(self):
dtrain = MarsDMatrix(self.X, self.y)
booster = train({}, dtrain, num_boost_round=2)
self.assertIsInstance(booster, Booster)
示例14: testLocalTrainDataFrame
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import Booster [as 別名]
def testLocalTrainDataFrame(self):
dtrain = MarsDMatrix(self.X_df, self.y_series)
booster = train({}, dtrain, num_boost_round=2)
self.assertIsInstance(booster, Booster)
示例15: __init__
# 需要導入模塊: import xgboost [as 別名]
# 或者: from xgboost import Booster [as 別名]
def __init__(self, booster: xgb.Booster) -> None:
self.booster = booster