當前位置: 首頁>>代碼示例>>Python>>正文


Python xarray.concat方法代碼示例

本文整理匯總了Python中xarray.concat方法的典型用法代碼示例。如果您正苦於以下問題:Python xarray.concat方法的具體用法?Python xarray.concat怎麽用?Python xarray.concat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在xarray的用法示例。


在下文中一共展示了xarray.concat方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _bounds_from_array

# 需要導入模塊: import xarray [as 別名]
# 或者: from xarray import concat [as 別名]
def _bounds_from_array(arr, dim_name, bounds_name):
    """Get the bounds of an array given its center values.

    E.g. if lat-lon grid center lat/lon values are known, but not the
    bounds of each grid box.  The algorithm assumes that the bounds
    are simply halfway between each pair of center values.
    """
    # TODO: don't assume needed dimension is in axis=0
    # TODO: refactor to get rid of repetitive code
    spacing = arr.diff(dim_name).values
    lower = xr.DataArray(np.empty_like(arr), dims=arr.dims,
                         coords=arr.coords)
    lower.values[:-1] = arr.values[:-1] - 0.5*spacing
    lower.values[-1] = arr.values[-1] - 0.5*spacing[-1]
    upper = xr.DataArray(np.empty_like(arr), dims=arr.dims,
                         coords=arr.coords)
    upper.values[:-1] = arr.values[:-1] + 0.5*spacing
    upper.values[-1] = arr.values[-1] + 0.5*spacing[-1]
    bounds = xr.concat([lower, upper], dim='bounds')
    return bounds.T 
開發者ID:spencerahill,項目名稱:aospy,代碼行數:22,代碼來源:model.py

示例2: concatenate_intensity_tables

# 需要導入模塊: import xarray [as 別名]
# 或者: from xarray import concat [as 別名]
def concatenate_intensity_tables(
        intensity_tables: List["IntensityTable"],
        overlap_strategy: Optional[OverlapStrategy] = None
    ) -> "IntensityTable":
        """
        Parameters
        ----------
        intensity_tables: List[IntensityTable]
            List of IntensityTables to be combined.
        overlap_strategy


        Returns
        -------

        """
        if overlap_strategy:
            intensity_tables = IntensityTable._process_overlaps(
                intensity_tables, overlap_strategy
            )
        return xr.concat(intensity_tables, dim=Features.AXIS) 
開發者ID:spacetx,項目名稱:starfish,代碼行數:23,代碼來源:intensity_table.py

示例3: concatenate

# 需要導入模塊: import xarray [as 別名]
# 或者: from xarray import concat [as 別名]
def concatenate(expression_matrices: Iterable[ExpressionMatrix]) -> ExpressionMatrix:
    """Concatenate IntensityTables produced for different fields of view or across imaging rounds

    Expression Matrices are concatenated along the cells axis, and the resulting arrays are stored
    densely.

    Parameters
    ----------
    expression_matrices : Iterable[ExpressionMatrix]
        iterable (list-like) of expression matrices to combine

    Returns
    -------
    ExpressionMatrix :
        Concatenated expression matrix containing all input cells. Missing gene values are filled
        with np.nan

    See Also
    --------
    Combine_first: http://xarray.pydata.org/en/stable/combining.html#combine

    """
    concatenated_matrix: xr.DataArray = xr.concat(list(expression_matrices), Features.CELLS)
    return ExpressionMatrix(concatenated_matrix) 
開發者ID:spacetx,項目名稱:starfish,代碼行數:26,代碼來源:concatenate.py

示例4: convert_lons_lats_ncep

# 需要導入模塊: import xarray [as 別名]
# 或者: from xarray import concat [as 別名]
def convert_lons_lats_ncep(ds, xs, ys):
    if not isinstance(xs, slice):
        first, second, last = np.asarray(xs)[[0,1,-1]]
        xs = slice(first - 0.1*(second - first), last + 0.1*(second - first))
    if not isinstance(ys, slice):
        first, second, last = np.asarray(ys)[[0,1,-1]]
        ys = slice(first - 0.1*(second - first), last + 0.1*(second - first))

    ds = ds.sel(lat_0=ys)

    # Lons should go from -180. to +180.
    if len(ds.coords['lon_0'].sel(lon_0=slice(xs.start + 360., xs.stop + 360.))):
        ds = xr.concat([ds.sel(lon_0=slice(xs.start + 360., xs.stop + 360.)),
                        ds.sel(lon_0=xs)],
                       dim="lon_0")
        ds = ds.assign_coords(lon_0=np.where(ds.coords['lon_0'].values <= 180,
                                             ds.coords['lon_0'].values,
                                             ds.coords['lon_0'].values - 360.))
    else:
        ds = ds.sel(lon_0=xs)

    ds = ds.rename({'lon_0': 'x', 'lat_0': 'y'})
    ds = ds.assign_coords(lon=ds.coords['x'], lat=ds.coords['y'])
    return ds 
開發者ID:PyPSA,項目名稱:atlite,代碼行數:26,代碼來源:ncep.py

示例5: _open_files

# 需要導入模塊: import xarray [as 別名]
# 或者: from xarray import concat [as 別名]
def _open_files(self, files):
        import xarray as xr
        das = [xr.open_rasterio(f, chunks=self.chunks, **self._kwargs)
               for f in files]
        out = xr.concat(das, dim=self.dim)

        coords = {}
        if self.pattern:
            coords = {
                k: xr.concat(
                    [xr.DataArray(
                        np.full(das[i].sizes.get(self.dim, 1), v),
                        dims=self.dim
                    ) for i, v in enumerate(values)], dim=self.dim)
                for k, values in reverse_formats(self.pattern, files).items()
            }

        return out.assign_coords(**coords).chunk(self.chunks) 
開發者ID:intake,項目名稱:intake-xarray,代碼行數:20,代碼來源:raster.py

示例6: test_extract_months

# 需要導入模塊: import xarray [as 別名]
# 或者: from xarray import concat [as 別名]
def test_extract_months():
    time = xr.DataArray(pd.date_range(start='2001-02-18', end='2002-07-12',
                                      freq='1D'), dims=[TIME_STR])
    months = 'mam'  # March-April-May
    desired = xr.concat([
        xr.DataArray(pd.date_range(start='2001-03-01', end='2001-05-31',
                                   freq='1D'), dims=[TIME_STR]),
        xr.DataArray(pd.date_range(start='2002-03-01', end='2002-05-31',
                                   freq='1D'), dims=[TIME_STR])
    ], dim=TIME_STR)
    actual = extract_months(time, months)
    xr.testing.assert_identical(actual, desired) 
開發者ID:spencerahill,項目名稱:aospy,代碼行數:14,代碼來源:test_utils_times.py

示例7: concat_data

# 需要導入模塊: import xarray [as 別名]
# 或者: from xarray import concat [as 別名]
def concat_data(self, data, *args, **kwargs):
        """Concats data1 and data2 for xarray or pandas as needed

        Parameters
        ----------
        data : pandas or xarray
           Data to be appended to data already within the Instrument object

        Returns
        -------
        void
            Instrument.data modified in place.

        Notes
        -----
        For pandas, sort=False is passed along to the underlying
        pandas.concat method. If sort is supplied as a keyword, the
        user provided value is used instead.

        For xarray, dim='time' is passed along to xarray.concat
        except if the user includes a value for dim as a
        keyword argument.

        """

        if self.pandas_format:
            if 'sort' in kwargs:
                sort = kwargs['sort']
                _ = kwargs.pop('sort')
            else:
                sort = False
            return pds.concat(data, sort=sort, *args, **kwargs)
        else:
            if 'dim' in kwargs:
                dim = kwargs['dim']
                _ = kwargs.pop('dim')
            else:
                dim = 'time'
            return xr.concat(data, dim=dim, *args, **kwargs) 
開發者ID:pysat,項目名稱:pysat,代碼行數:41,代碼來源:_instrument.py

示例8: _reshape

# 需要導入模塊: import xarray [as 別名]
# 或者: from xarray import concat [as 別名]
def _reshape(da, window_width):
    """
    Helper function for `fit` that splits the year and day
    dimensions of the time-coordinate and bookends the years
    e.g. (Dec15:31 + whole year + Jan1:15) if window_width is 31 days.

    Parameters
    ----------
    da : xr.DataArray, shape (n_samples, )
        Samples
    window_width : int
        The size of the rolling window.

    Returns
    -------
    ds_rsh : xr.Dataset, shape(day: 364 + n_bookend_days, year: n_years)
        Reshaped xr.Dataset
    """

    assert da.ndim == 1

    if "time" not in da.coords and "index" in da.coords:
        da = da.rename({"index": "time"})
    assert "time" in da.coords

    def split(g):
        return g.rename({"time": "day"}).assign_coords(day=g.time.dt.dayofyear.values)

    da_split = da.groupby("time.year").map(split)

    early_jans = da_split.isel(day=slice(None, window_width // 2))
    late_decs = da_split.isel(day=slice(-window_width // 2, None))

    da_rsh = xr.concat([late_decs, da_split, early_jans], dim="day")
    return da_rsh 
開發者ID:jhamman,項目名稱:scikit-downscale,代碼行數:37,代碼來源:zscore.py

示例9: _finalise_arr

# 需要導入模塊: import xarray [as 別名]
# 或者: from xarray import concat [as 別名]
def _finalise_arr(self, arr, N):
        if isinstance(arr, list):
            logger.debug("Concatenating {N:d} DataArrays...".format(N=N))
            if self.concat_coor is None:
                return utils.concat_each_time_coordinate(*arr)
            else:
                return xarray.concat(arr, dim=self.concat_coor)
            logger.debug("Done!")
        else:
            return self._correct_overallocation(arr, N) 
開發者ID:atmtools,項目名稱:typhon,代碼行數:12,代碼來源:dataset.py

示例10: test_multidimensional_error

# 需要導入模塊: import xarray [as 別名]
# 或者: from xarray import concat [as 別名]
def test_multidimensional_error():
    gdf = gpd.read_file(os.path.join(TEST_INPUT_DATA_DIR, "soil_data_flat.geojson"))
    vxd = vectorxarray.from_geodataframe(gdf)
    vxd2 = vxd.copy()
    vxd.coords["time"] = parse("20170516T000000")
    vxd2.coords["time"] = parse("20170517T000000")
    merged_vxd = xarray.concat([vxd, vxd2], dim="time")
    with pytest.raises(ValueError):
        merged_vxd.vector.plot(column="sandtotal_r") 
開發者ID:corteva,項目名稱:geocube,代碼行數:11,代碼來源:test_integration_xarray_extensions_vectorxarray.py

示例11: _bootstrap_dim

# 需要導入模塊: import xarray [as 別名]
# 或者: from xarray import concat [as 別名]
def _bootstrap_dim(control, nlead_years, dim, dim_label):
    """
    Add a `len(dim_label)` dimension `dim` to uninitialized control by random
    resampling.
    """
    c_start = 0
    c_end = control['time'].size
    leads = np.arange(1, 1 + nlead_years)

    def isel_years(control, year_s, length=nlead_years):
        new = control.isel(time=slice(year_s, year_s + length))
        new = new.rename({'time': 'lead'})
        new['lead'] = leads
        return new

    def create_pseudo_members(control):
        startlist = np.random.randint(c_start, c_end - nlead_years - 1, len(dim_label))
        return xr.concat([isel_years(control, start) for start in startlist], dim)

    control_uninitialized = create_pseudo_members(control)
    control_uninitialized[dim] = dim_label
    return control_uninitialized


# TODO: refactoring needed. proposed steps:
# first calculate all EOFs. save those. then calc compute_relative_entropy 
開發者ID:bradyrx,項目名稱:climpred,代碼行數:28,代碼來源:relative_entropy.py

示例12: _same_verifs_alignment

# 需要導入模塊: import xarray [as 別名]
# 或者: from xarray import concat [as 別名]
def _same_verifs_alignment(init_lead_matrix, valid_inits, all_verifs, leads, n, freq):
    """Returns initializations and verification dates, maintaining a common verification
    window at all leads.

    See ``return_inits_and_verif_dates`` for descriptions of expected variables.
    """
    common_set_of_verifs = [
        i for i in all_verifs if (i == init_lead_matrix).any('time').all('lead')
    ]
    if not common_set_of_verifs:
        raise CoordinateError(
            'A common set of verification dates cannot be found for the '
            'initializations and verification data supplied. Change `alignment` to '
            "'same_inits' or 'maximize'."
        )
    # Force to CFTimeIndex for consistency with `same_inits`
    verif_dates = xr.concat(common_set_of_verifs, 'time').to_index()
    inits_that_verify_with_verif_dates = init_lead_matrix.isin(verif_dates)
    inits = {
        lead: valid_inits.where(
            inits_that_verify_with_verif_dates.sel(lead=lead), drop=True
        )
        for lead in leads
    }
    verif_dates = {lead: verif_dates for lead in leads}
    return inits, verif_dates 
開發者ID:bradyrx,項目名稱:climpred,代碼行數:28,代碼來源:alignment.py

示例13: _construct_init_lead_matrix

# 需要導入模塊: import xarray [as 別名]
# 或者: from xarray import concat [as 別名]
def _construct_init_lead_matrix(forecast, n, freq, leads):
    """Returns xr.DataArray of "real time" (init + lead) over all inits and leads.

    Arguments:
        forecast (``xarray object``): Prediction ensemble with ``init`` dim renamed to
            ``time`` and containing ``lead`` dim.
        n (tuple of ints): Number of units to shift for ``leads``. ``value`` for
            ``CFTimeIndex.shift(value, str)``.
        freq (str): Pandas frequency alias. ``str`` for
            ``CFTimeIndex.shift(value, str)``.
        leads (list, array, xr.DataArray of ints): Leads to return offset for.

    Returns:
        init_lead_matrix (``xr.DataArray``): DataArray with x=inits and y=lead with
            values corresponding to "real time", or ``init + lead`` over all inits and
            leads.
    """
    # Note that `init` is renamed to `time` in compute functions.
    init_lead_matrix = xr.concat(
        [
            xr.DataArray(
                shift_cftime_index(forecast, 'time', n, freq),
                dims=['time'],
                coords=[forecast['time']],
            )
            for n in n
        ],
        'lead',
    )
    init_lead_matrix['lead'] = leads
    return init_lead_matrix 
開發者ID:bradyrx,項目名稱:climpred,代碼行數:33,代碼來源:alignment.py

示例14: decorrelation_time

# 需要導入模塊: import xarray [as 別名]
# 或者: from xarray import concat [as 別名]
def decorrelation_time(da, r=20, dim='time'):
    """Calculate the decorrelaton time of a time series.

    .. math::
        \\tau_{d} = 1 + 2 * \\sum_{k=1}^{r}(\\alpha_{k})^{k}

    Args:
        da (xarray object): Time series.
        r (optional int): Number of iterations to run the above formula.
        dim (optional str): Time dimension for xarray object.

    Returns:
        Decorrelation time of time series.

    Reference:
        * Storch, H. v, and Francis W. Zwiers. Statistical Analysis in Climate
          Research. Cambridge ; New York: Cambridge University Press, 1999.,
          p.373

    """
    one = xr.ones_like(da.isel({dim: 0}))
    one = one.where(da.isel({dim: 0}).notnull())
    return one + 2 * xr.concat(
        [autocorr(da, dim=dim, lag=i) ** i for i in range(1, r)], 'it'
    ).sum('it')


# --------------------------------------------#
# Diagnostic Potential Predictability (DPP)
# Functions related to DPP from Boer et al.
# --------------------------------------------# 
開發者ID:bradyrx,項目名稱:climpred,代碼行數:33,代碼來源:stats.py

示例15: test_m2e

# 需要導入模塊: import xarray [as 別名]
# 或者: from xarray import concat [as 別名]
def test_m2e(PM_da_initialized_1d):
    """Test many-to-ensemble-mean (m2e) comparison basic functionality.

    Clean comparison: Remove one member from ensemble to use as reference.
    Take the remaining members as forecasts."""
    ds = PM_da_initialized_1d
    aforecast, areference = __m2e.function(ds, metric=metric)

    reference_list = []
    forecast_list = []
    for m in ds.member.values:
        forecast = _drop_members(ds, removed_member=[m]).mean('member')
        reference = ds.sel(member=m).squeeze()
        forecast, reference = xr.broadcast(forecast, reference)
        forecast_list.append(forecast)
        reference_list.append(reference)
    reference = xr.concat(reference_list, 'member')
    forecast = xr.concat(forecast_list, 'member')
    forecast['member'] = np.arange(forecast.member.size)
    reference['member'] = np.arange(reference.member.size)

    eforecast, ereference = forecast, reference
    # very weak testing on shape
    assert eforecast.size == aforecast.size
    assert ereference.size == areference.size

    assert_equal(eforecast, aforecast)
    assert_equal(ereference, areference) 
開發者ID:bradyrx,項目名稱:climpred,代碼行數:30,代碼來源:test_comparisons.py


注:本文中的xarray.concat方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。