當前位置: 首頁>>代碼示例>>Python>>正文


Python warpctc_pytorch.CTCLoss方法代碼示例

本文整理匯總了Python中warpctc_pytorch.CTCLoss方法的典型用法代碼示例。如果您正苦於以下問題:Python warpctc_pytorch.CTCLoss方法的具體用法?Python warpctc_pytorch.CTCLoss怎麽用?Python warpctc_pytorch.CTCLoss使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在warpctc_pytorch的用法示例。


在下文中一共展示了warpctc_pytorch.CTCLoss方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import warpctc_pytorch [as 別名]
# 或者: from warpctc_pytorch import CTCLoss [as 別名]
def __init__(self, odim, eprojs, dropout_rate, ctc_type='warpctc', reduce=True):
        super().__init__()
        self.dropout_rate = dropout_rate
        self.loss = None
        self.ctc_lo = torch.nn.Linear(eprojs, odim)
        self.ctc_type = ctc_type

        if self.ctc_type == 'builtin':
            reduction_type = 'sum' if reduce else 'none'
            self.ctc_loss = torch.nn.CTCLoss(reduction=reduction_type)
        elif self.ctc_type == 'warpctc':
            import warpctc_pytorch as warp_ctc
            self.ctc_loss = warp_ctc.CTCLoss(size_average=True, reduce=reduce)
        else:
            raise ValueError('ctc_type must be "builtin" or "warpctc": {}'
                             .format(self.ctc_type))

        self.ignore_id = -1
        self.reduce = reduce 
開發者ID:DigitalPhonetics,項目名稱:adviser,代碼行數:21,代碼來源:ctc.py

示例2: __init__

# 需要導入模塊: import warpctc_pytorch [as 別名]
# 或者: from warpctc_pytorch import CTCLoss [as 別名]
def __init__(self, odim, eprojs, dropout_rate, ctc_type="warpctc", reduce=True):
        super().__init__()
        self.dropout_rate = dropout_rate
        self.loss = None
        self.ctc_lo = torch.nn.Linear(eprojs, odim)

        # In case of Pytorch >= 1.2.0, CTC will be always builtin
        self.ctc_type = (
            ctc_type
            if LooseVersion(torch.__version__) < LooseVersion("1.2.0")
            else "builtin"
        )
        if ctc_type != self.ctc_type:
            logging.warning(f"CTC was set to {self.ctc_type} due to PyTorch version.")
        if self.ctc_type == "builtin":
            reduction_type = "sum" if reduce else "none"
            self.ctc_loss = torch.nn.CTCLoss(reduction=reduction_type)
        elif self.ctc_type == "warpctc":
            import warpctc_pytorch as warp_ctc

            self.ctc_loss = warp_ctc.CTCLoss(size_average=True, reduce=reduce)
        else:
            raise ValueError(
                'ctc_type must be "builtin" or "warpctc": {}'.format(self.ctc_type)
            )

        self.ignore_id = -1
        self.reduce = reduce 
開發者ID:espnet,項目名稱:espnet,代碼行數:30,代碼來源:ctc.py

示例3: __init__

# 需要導入模塊: import warpctc_pytorch [as 別名]
# 或者: from warpctc_pytorch import CTCLoss [as 別名]
def __init__(
        self,
        odim: int,
        encoder_output_sizse: int,
        dropout_rate: float = 0.0,
        ctc_type: str = "builtin",
        reduce: bool = True,
    ):
        assert check_argument_types()
        super().__init__()
        eprojs = encoder_output_sizse
        self.dropout_rate = dropout_rate
        self.ctc_lo = torch.nn.Linear(eprojs, odim)
        self.ctc_type = ctc_type

        if self.ctc_type == "builtin":
            reduction_type = "sum" if reduce else "none"
            self.ctc_loss = torch.nn.CTCLoss(reduction=reduction_type)
        elif self.ctc_type == "warpctc":
            import warpctc_pytorch as warp_ctc

            self.ctc_loss = warp_ctc.CTCLoss(size_average=True, reduce=reduce)
        else:
            raise ValueError(
                f'ctc_type must be "builtin" or "warpctc": {self.ctc_type}'
            )

        self.reduce = reduce 
開發者ID:espnet,項目名稱:espnet,代碼行數:30,代碼來源:ctc.py

示例4: __init__

# 需要導入模塊: import warpctc_pytorch [as 別名]
# 或者: from warpctc_pytorch import CTCLoss [as 別名]
def __init__(self, abc, config, profiler, imgH, nc, rnn_hidden_size=256, rnn_num_layers=2, leakyRelu=False):
        
        super(CRNN_resnet, self).__init__()
        assert imgH % 16 == 0, 'imgH has to be a multiple of 16'

        self.abc = abc
        self.num_classes = len(abc)+1
        self.hidden_size = rnn_hidden_size

        self.use_pretrained_rnn = False

        self.config = config
        self.seed()
        self.profiler = profiler

        self.loss_name = self.config['lossf']
        
        self.prev_lr = config['lr'][1]
        self.is_gray = (nc == 1)

        resnet = torchvision.models.resnet.resnet18(pretrained=True)

        for param in resnet.parameters():
            param.requires_grad = False

        features = list(resnet.children())[:-2]
        self.cnn = nn.Sequential(
            *features,
            )#nn.Conv2d(1024, 512, 2)

        self.rnn = nn.Sequential(
            BidirectionalLSTM(512, self.hidden_size, self.hidden_size),
            BidirectionalLSTM(self.hidden_size, self.hidden_size, self.num_classes))

        if config['lossf'] == 'CTC':
            log.info('Using CTC')
            self.lossf = CTCLoss()

        if self.config['optimizer'] == 'Adam':
            log.info('Using Adam optimizer')
            self.opt = optim.Adam(self.parameters(), lr=config['lr'][1], weight_decay=config['weight_decay'])
        
        elif self.config['optimizer'] == 'SGD':
            log.info('Using SGD optimizer')
            self.opt = optim.SGD(self.parameters(), lr=config['lr'][1], momentum=config['momentum'], weight_decay=config['weight_decay'])

        if self.config['PreTrained_net'] and self.config['PreTrained_model']['check'] == False and self.use_pretrained_rnn:
            self.custom_pick()

        if config['varying_width']:
            self.list_or_tensor = 'list'
        else:
            self.list_or_tensor = 'tensor' 
開發者ID:mayank-git-hub,項目名稱:Text-Recognition,代碼行數:55,代碼來源:crnn.py

示例5: __init__

# 需要導入模塊: import warpctc_pytorch [as 別名]
# 或者: from warpctc_pytorch import CTCLoss [as 別名]
def __init__(self,
                 eos,
                 blank,
                 enc_n_units,
                 vocab,
                 dropout=0.,
                 lsm_prob=0.,
                 fc_list=None,
                 param_init=0.1,
                 backward=False):

        super(CTC, self).__init__()

        self.eos = eos
        self.blank = blank
        self.vocab = vocab
        self.lsm_prob = lsm_prob
        self.bwd = backward

        self.space = -1  # TODO(hirofumi): fix later

        # for posterior plot
        self.prob_dict = {}
        self.data_dict = {}

        # Fully-connected layers before the softmax
        if fc_list is not None and len(fc_list) > 0:
            _fc_list = [int(fc) for fc in fc_list.split('_')]
            fc_layers = OrderedDict()
            for i in range(len(_fc_list)):
                input_dim = enc_n_units if i == 0 else _fc_list[i - 1]
                fc_layers['fc' + str(i)] = nn.Linear(input_dim, _fc_list[i])
                fc_layers['dropout' + str(i)] = nn.Dropout(p=dropout)
            fc_layers['fc' + str(len(_fc_list))] = nn.Linear(_fc_list[-1], vocab)
            self.output = nn.Sequential(fc_layers)
        else:
            self.output = nn.Linear(enc_n_units, vocab)

        import warpctc_pytorch
        self.warpctc_loss = warpctc_pytorch.CTCLoss(size_average=True)

        self.forced_aligner = CTCForcedAligner() 
開發者ID:hirofumi0810,項目名稱:neural_sp,代碼行數:44,代碼來源:ctc.py

示例6: test_ctc_loss

# 需要導入模塊: import warpctc_pytorch [as 別名]
# 或者: from warpctc_pytorch import CTCLoss [as 別名]
def test_ctc_loss(in_length, out_length, use_warpctc):
    pytest.importorskip("torch")
    if use_warpctc:
        pytest.importorskip("warpctc_pytorch")
        import warpctc_pytorch

        torch_ctcloss = warpctc_pytorch.CTCLoss(size_average=True)
    else:
        if LooseVersion(torch.__version__) < LooseVersion("1.0"):
            pytest.skip("pytorch < 1.0 doesn't support CTCLoss")
        _ctcloss_sum = torch.nn.CTCLoss(reduction="sum")

        def torch_ctcloss(th_pred, th_target, th_ilen, th_olen):
            th_pred = th_pred.log_softmax(2)
            loss = _ctcloss_sum(th_pred, th_target, th_ilen, th_olen)
            # Batch-size average
            loss = loss / th_pred.size(1)
            return loss

    n_out = 7
    input_length = numpy.array(in_length, dtype=numpy.int32)
    label_length = numpy.array(out_length, dtype=numpy.int32)
    np_pred = [
        numpy.random.rand(il, n_out).astype(numpy.float32) for il in input_length
    ]
    np_target = [
        numpy.random.randint(0, n_out, size=ol, dtype=numpy.int32)
        for ol in label_length
    ]

    # NOTE: np_pred[i] seems to be transposed and used axis=-1 in e2e_asr.py
    ch_pred = F.separate(F.pad_sequence(np_pred), axis=-2)
    ch_target = F.pad_sequence(np_target, padding=-1)
    ch_loss = F.connectionist_temporal_classification(
        ch_pred, ch_target, 0, input_length, label_length
    ).data

    th_pred = pad_list([torch.from_numpy(x) for x in np_pred], 0.0).transpose(0, 1)
    th_target = torch.from_numpy(numpy.concatenate(np_target))
    th_ilen = torch.from_numpy(input_length)
    th_olen = torch.from_numpy(label_length)
    th_loss = torch_ctcloss(th_pred, th_target, th_ilen, th_olen).numpy()
    numpy.testing.assert_allclose(th_loss, ch_loss, 0.05) 
開發者ID:espnet,項目名稱:espnet,代碼行數:45,代碼來源:test_loss.py

示例7: test_attn_loss

# 需要導入模塊: import warpctc_pytorch [as 別名]
# 或者: from warpctc_pytorch import CTCLoss [as 別名]
def test_attn_loss():
    n_out = 7
    _eos = n_out - 1
    n_batch = 3
    label_length = numpy.array([4, 2, 3], dtype=numpy.int32)
    np_pred = numpy.random.rand(n_batch, max(label_length) + 1, n_out).astype(
        numpy.float32
    )
    # NOTE: 0 is only used for CTC, never appeared in attn target
    np_target = [
        numpy.random.randint(1, n_out - 1, size=ol, dtype=numpy.int32)
        for ol in label_length
    ]

    eos = numpy.array([_eos], "i")
    ys_out = [F.concat([y, eos], axis=0) for y in np_target]

    # padding for ys with -1
    # pys: utt x olen
    # NOTE: -1 is default ignore index for chainer
    pad_ys_out = F.pad_sequence(ys_out, padding=-1)
    y_all = F.reshape(np_pred, (n_batch * (max(label_length) + 1), n_out))
    ch_loss = F.softmax_cross_entropy(y_all, F.concat(pad_ys_out, axis=0))

    # NOTE: this index 0 is only for CTC not attn. so it can be ignored
    # unfortunately, torch cross_entropy does not accept out-of-bound ids
    th_ignore = 0
    th_pred = torch.from_numpy(y_all.data)
    th_target = pad_list([torch.from_numpy(t.data).long() for t in ys_out], th_ignore)
    if LooseVersion(torch.__version__) < LooseVersion("1.0"):
        reduction_str = "elementwise_mean"
    else:
        reduction_str = "mean"
    th_loss = torch.nn.functional.cross_entropy(
        th_pred, th_target.view(-1), ignore_index=th_ignore, reduction=reduction_str
    )
    print(ch_loss)
    print(th_loss)

    # NOTE: warpctc_pytorch.CTCLoss does not normalize itself by batch-size
    # while chainer's default setting does
    loss_data = float(th_loss)
    numpy.testing.assert_allclose(loss_data, ch_loss.data, 0.05) 
開發者ID:espnet,項目名稱:espnet,代碼行數:45,代碼來源:test_loss.py

示例8: __init__

# 需要導入模塊: import warpctc_pytorch [as 別名]
# 或者: from warpctc_pytorch import CTCLoss [as 別名]
def __init__(self, vlog=None, tlog=None, batch_size=8, init_lr=1e-4, max_norm=400,
                 use_cuda=False, log_dir='logs_densenet_ctc', model_prefix='densenet_ctc',
                 checkpoint=False, continue_from=None, opt_type="sgd", *args, **kwargs):
        # training parameters
        self.batch_size = batch_size
        self.init_lr = init_lr
        self.max_norm = max_norm
        self.use_cuda = use_cuda
        self.log_dir = log_dir
        self.model_prefix = model_prefix
        self.checkpoint = checkpoint
        self.epoch = 0

        # visual logging
        self.vlog = vlog
        if self.vlog is not None:
            self.vlog.add_plot(title='loss', xlabel='epoch')
        self.tlog = tlog

        # setup model
        self.model = densenet_custom(num_classes=p.NUM_CTC_LABELS)
        if self.use_cuda:
            self.model.cuda()

        # setup loss
        self.loss = CTCLoss(blank=0, size_average=True)

        # setup optimizer
        assert opt_type in OPTIMIZER_TYPES
        parameters = self.model.parameters()
        if opt_type == "sgd":
            logger.info("using SGD")
            self.optimizer = torch.optim.SGD(parameters, lr=self.init_lr, momentum=0.9)
            self.lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer, T_max=5)
        elif opt_type == "sgdr":
            logger.info("using SGDR")
            self.optimizer = torch.optim.SGD(parameters, lr=self.init_lr, momentum=0.9)
            #self.lr_scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=1, gamma=0.5)
            self.lr_scheduler = CosineAnnealingWithRestartsLR(self.optimizer, T_max=5, T_mult=2)
        elif opt_type == "adam":
            logger.info("using AdamW")
            self.optimizer = torch.optim.Adam(parameters, lr=self.init_lr, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0005, l2_reg=False)
            self.lr_scheduler = None

        # setup decoder for test
        self.decoder = LatGenCTCDecoder()

        if continue_from is not None:
            self.load(continue_from) 
開發者ID:jinserk,項目名稱:pytorch-asr,代碼行數:51,代碼來源:train.py


注:本文中的warpctc_pytorch.CTCLoss方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。