本文整理匯總了Python中wandb.log方法的典型用法代碼示例。如果您正苦於以下問題:Python wandb.log方法的具體用法?Python wandb.log怎麽用?Python wandb.log使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類wandb
的用法示例。
在下文中一共展示了wandb.log方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: remove_duplicates
# 需要導入模塊: import wandb [as 別名]
# 或者: from wandb import log [as 別名]
def remove_duplicates(tr_eps, val_eps, test_eps, test_labels):
"""
Remove any items in test_eps (&test_labels) which are present in tr/val_eps
"""
flat_tr = list(chain.from_iterable(tr_eps))
flat_val = list(chain.from_iterable(val_eps))
tr_val_set = set([x.numpy().tostring() for x in flat_tr] + [x.numpy().tostring() for x in flat_val])
flat_test = list(chain.from_iterable(test_eps))
for i, episode in enumerate(test_eps[:]):
test_labels[i] = [label for obs, label in zip(test_eps[i], test_labels[i]) if obs.numpy().tostring() not in tr_val_set]
test_eps[i] = [obs for obs in episode if obs.numpy().tostring() not in tr_val_set]
test_len = len(list(chain.from_iterable(test_eps)))
dups = len(flat_test) - test_len
print('Duplicates: {}, Test Len: {}'.format(dups, test_len))
#wandb.log({'Duplicates': dups, 'Test Len': test_len})
return test_eps, test_labels
示例2: write_log
# 需要導入模塊: import wandb [as 別名]
# 或者: from wandb import log [as 別名]
def write_log(
self, log_value: tuple,
):
i_episode, n_step, score, actor_loss, critic_loss, total_loss = log_value
print(
"[INFO] episode %d\tepisode steps: %d\ttotal score: %d\n"
"total loss: %f\tActor loss: %f\tCritic loss: %f\n"
% (i_episode, n_step, score, total_loss, actor_loss, critic_loss)
)
if self.args.log:
wandb.log(
{
"total loss": total_loss,
"actor loss": actor_loss,
"critic loss": critic_loss,
"score": score,
}
)
示例3: write_log
# 需要導入模塊: import wandb [as 別名]
# 或者: from wandb import log [as 別名]
def write_log(self, log_value: tuple):
i, score, policy_loss, value_loss = log_value
total_loss = policy_loss + value_loss
print(
"[INFO] episode %d\tepisode step: %d\ttotal score: %d\n"
"total loss: %.4f\tpolicy loss: %.4f\tvalue loss: %.4f\n"
% (i, self.episode_step, score, total_loss, policy_loss, value_loss)
)
if self.args.log:
wandb.log(
{
"total loss": total_loss,
"policy loss": policy_loss,
"value loss": value_loss,
"score": score,
}
)
示例4: run
# 需要導入模塊: import wandb [as 別名]
# 或者: from wandb import log [as 別名]
def run(self):
"""Run main logging loop; continuously receive data and log."""
if self.args.log:
self.set_wandb()
while self.update_step < self.args.max_update_step:
self.recv_log_info()
if self.log_info_queue: # if non-empty
log_info_id = self.log_info_queue.pop()
log_info = pa.deserialize(log_info_id)
state_dict = log_info["state_dict"]
log_value = log_info["log_value"]
self.update_step = log_value["update_step"]
self.synchronize(state_dict)
avg_score = self.test(self.update_step)
log_value["avg_score"] = avg_score
self.write_log(log_value)
示例5: __init__
# 需要導入模塊: import wandb [as 別名]
# 或者: from wandb import log [as 別名]
def __init__(
self, train_tensors=[], wandb_name=None, wandb_project=None, args=None, update_freq=25,
):
"""
Args:
train_tensors: list of tensors to evaluate and log based on training batches
wandb_name: wandb experiment name
wandb_project: wandb project name
args: argparse flags - will be logged as hyperparameters
update_freq: frequency with which to log updates
"""
super().__init__()
if not _WANDB_AVAILABLE:
logging.error("Could not import wandb. Did you install it (pip install --upgrade wandb)?")
self._update_freq = update_freq
self._train_tensors = train_tensors
self._name = wandb_name
self._project = wandb_project
self._args = args
示例6: visualize_recon
# 需要導入模塊: import wandb [as 別名]
# 或者: from wandb import log [as 別名]
def visualize_recon(self, input_image, recon_image, test=False):
input_image = torchvision.utils.make_grid(input_image)
recon_image = torchvision.utils.make_grid(recon_image)
if self.white_line is None:
self.white_line = torch.ones((3, input_image.size(1), 10)).to(self.device)
samples = torch.cat([input_image, self.white_line, recon_image], dim=2)
if self.file_save:
if test:
file_name = os.path.join(self.test_output_dir, '{}_{}.{}'.format(c.RECON, self.iter, c.JPG))
else:
file_name = os.path.join(self.train_output_dir, '{}.{}'.format(c.RECON, c.JPG))
torchvision.utils.save_image(samples, file_name)
if self.use_wandb:
import wandb
wandb.log({c.RECON_IMAGE: wandb.Image(samples, caption=str(self.iter))},
step=self.iter)
示例7: visualize_figure
# 需要導入模塊: import wandb [as 別名]
# 或者: from wandb import log [as 別名]
def visualize_figure(self, fig):
import wandb
logger.info("wandb.visualize_figure() called...")
if wandb.run:
wandb.log({"figure": fig})
示例8: remove_low_entropy_labels
# 需要導入模塊: import wandb [as 別名]
# 或者: from wandb import log [as 別名]
def remove_low_entropy_labels(episode_labels, entropy_threshold=0.3):
flat_label_list = list(chain.from_iterable(episode_labels))
counts = {}
for label_dict in flat_label_list:
for k in label_dict:
counts[k] = counts.get(k, {})
v = label_dict[k]
counts[k][v] = counts[k].get(v, 0) + 1
low_entropy_labels = []
entropy_dict = {}
for k in counts:
entropy = torch.distributions.Categorical(
torch.tensor([x / len(flat_label_list) for x in counts[k].values()])).entropy()
entropy_dict['entropy_' + k] = entropy
if entropy < entropy_threshold:
print("Deleting {} for being too low in entropy! Sorry, dood!".format(k))
low_entropy_labels.append(k)
for e in episode_labels:
for obs in e:
for key in low_entropy_labels:
del obs[key]
# wandb.log(entropy_dict)
return episode_labels, entropy_dict
示例9: get_pretrained_rl_representations
# 需要導入模塊: import wandb [as 別名]
# 或者: from wandb import log [as 別名]
def get_pretrained_rl_representations(args, steps):
checkpoint = checkpointed_steps_full_sorted[args.checkpoint_index]
episodes, episode_labels, mean_reward = get_ppo_representations(args, steps, checkpoint)
wandb.log({"reward": mean_reward, "checkpoint": checkpoint})
return episodes, episode_labels
示例10: __init__
# 需要導入模塊: import wandb [as 別名]
# 或者: from wandb import log [as 別名]
def __init__(self, hp, logdir):
self.hp = hp
if hp.log.use_tensorboard:
self.tensorboard = SummaryWriter(logdir)
if hp.log.use_wandb:
wandb_init_conf = hp.log.wandb_init_conf.to_dict()
wandb_init_conf["config"] = hp.to_dict()
wandb.init(**wandb_init_conf)
示例11: logging_with_step
# 需要導入模塊: import wandb [as 別名]
# 或者: from wandb import log [as 別名]
def logging_with_step(self, value, step, logging_name):
if self.hp.log.use_tensorboard:
self.tensorboard.add_scalar(logging_name, value, step)
if self.hp.log.use_wandb:
wandb.log({logging_name: value}, step=step)
示例12: test_epoch_end
# 需要導入模塊: import wandb [as 別名]
# 或者: from wandb import log [as 別名]
def test_epoch_end(self, epoch_num: int):
""" Performs house-keeping at the end of the test epoch
It reports the metric that is being traced at the end
of the test epoch
Parameters
----------
epoch_num : int
Epoch num after which the test dataset is run
"""
metric_report = self.test_metric_calc.report_metrics()
for label_namespace, table in metric_report.items():
self.msg_printer.divider(text=f"Test Metrics for {label_namespace.upper()}")
print(table)
precision_recall_fmeasure = self.test_metric_calc.get_metric()
self.msg_printer.divider(f"Test @ Epoch {epoch_num+1}")
self.test_logger.info(
f"Test Metrics @ Epoch {epoch_num+1} - {precision_recall_fmeasure}"
)
if self.use_wandb:
wandb.log({"test_metrics": str(precision_recall_fmeasure)})
self.summaryWriter.close()
示例13: write_log
# 需要導入模塊: import wandb [as 別名]
# 或者: from wandb import log [as 別名]
def write_log(self, log_value: tuple):
"""Write log about loss and score"""
i, loss, score, avg_time_cost = log_value
print(
"[INFO] episode %d, episode step: %d, total step: %d, total score: %f\n"
"epsilon: %f, loss: %f, avg q-value: %f (spent %.6f sec/step)\n"
% (
i,
self.episode_step,
self.total_step,
score,
self.epsilon,
loss[0],
loss[1],
avg_time_cost,
)
)
if self.args.log:
wandb.log(
{
"score": score,
"epsilon": self.epsilon,
"dqn loss": loss[0],
"avg q values": loss[1],
"time per each step": avg_time_cost,
"total_step": self.total_step,
}
)
# pylint: disable=no-self-use, unnecessary-pass
示例14: write_log
# 需要導入模塊: import wandb [as 別名]
# 或者: from wandb import log [as 別名]
def write_log(self, log_value: tuple):
"""Write log about loss and score"""
i, loss, score, policy_update_freq, avg_time_cost = log_value
total_loss = loss.sum()
print(
"[INFO] episode %d, episode_step %d, total step %d, total score: %d\n"
"total loss: %.3f actor_loss: %.3f qf_1_loss: %.3f qf_2_loss: %.3f "
"vf_loss: %.3f alpha_loss: %.3f n_qf_mask: %d (spent %.6f sec/step)\n"
% (
i,
self.episode_step,
self.total_step,
score,
total_loss,
loss[0] * policy_update_freq, # actor loss
loss[1], # qf_1 loss
loss[2], # qf_2 loss
loss[3], # vf loss
loss[4], # alpha loss
loss[5], # n_qf_mask
avg_time_cost,
)
)
if self.args.log:
wandb.log(
{
"score": score,
"total loss": total_loss,
"actor loss": loss[0] * policy_update_freq,
"qf_1 loss": loss[1],
"qf_2 loss": loss[2],
"vf loss": loss[3],
"alpha loss": loss[4],
"time per each step": avg_time_cost,
}
)
示例15: write_log
# 需要導入模塊: import wandb [as 別名]
# 或者: from wandb import log [as 別名]
def write_log(self, log_value: tuple):
"""Write log about loss and score"""
i, loss, score, avg_time_cost = log_value
total_loss = loss.sum()
print(
"[INFO] episode %d, episode step: %d, total step: %d, total score: %d\n"
"total loss: %f actor_loss: %.3f critic_loss: %.3f, n_qf_mask: %d "
"(spent %.6f sec/step)\n"
% (
i,
self.episode_step,
self.total_step,
score,
total_loss,
loss[0],
loss[1],
loss[2],
avg_time_cost,
) # actor loss # critic loss
)
if self.args.log:
wandb.log(
{
"score": score,
"total loss": total_loss,
"actor loss": loss[0],
"critic loss": loss[1],
"time per each step": avg_time_cost,
}
)