本文整理匯總了Python中voc_eval.voc_eval方法的典型用法代碼示例。如果您正苦於以下問題:Python voc_eval.voc_eval方法的具體用法?Python voc_eval.voc_eval怎麽用?Python voc_eval.voc_eval使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類voc_eval
的用法示例。
在下文中一共展示了voc_eval.voc_eval方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: evaluate
# 需要導入模塊: import voc_eval [as 別名]
# 或者: from voc_eval import voc_eval [as 別名]
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)
path_to_voc2007_dir = os.path.join(self._path_to_data_dir, 'VOCdevkit', 'VOC2007')
path_to_main_dir = os.path.join(path_to_voc2007_dir, 'ImageSets', 'Main')
path_to_annotations_dir = os.path.join(path_to_voc2007_dir, 'Annotations')
class_to_ap_dict = {}
for c in range(1, VOC2007.num_classes()):
category = VOC2007.LABEL_TO_CATEGORY_DICT[c]
try:
path_to_cache_dir = os.path.join('caches', 'voc2007')
os.makedirs(path_to_cache_dir, exist_ok=True)
_, _, ap = voc_eval(detpath=os.path.join(path_to_results_dir, 'comp3_det_test_{:s}.txt'.format(category)),
annopath=os.path.join(path_to_annotations_dir, '{:s}.xml'),
imagesetfile=os.path.join(path_to_main_dir, 'test.txt'),
classname=category,
cachedir=path_to_cache_dir,
ovthresh=0.5,
use_07_metric=True)
except IndexError:
ap = 0
class_to_ap_dict[c] = ap
mean_ap = np.mean([v for k, v in class_to_ap_dict.items()]).item()
detail = ''
for c in range(1, VOC2007.num_classes()):
detail += '{:d}: {:s} AP = {:.4f}\n'.format(c, VOC2007.LABEL_TO_CATEGORY_DICT[c], class_to_ap_dict[c])
return mean_ap, detail
示例2: evaluate
# 需要導入模塊: import voc_eval [as 別名]
# 或者: from voc_eval import voc_eval [as 別名]
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)
path_to_voc2007_dir = os.path.join(self._path_to_data_dir, 'VOCdevkit', 'VOC2007')
path_to_main_dir = os.path.join(path_to_voc2007_dir, 'ImageSets', 'Main')
path_to_annotations_dir = os.path.join(path_to_voc2007_dir, 'Annotations')
class_to_ap_dict = {}
for c in range(1, VOC2007CatDog.num_classes()):
category = VOC2007CatDog.LABEL_TO_CATEGORY_DICT[c]
try:
path_to_cache_dir = os.path.join('caches', 'voc2007-cat-dog')
os.makedirs(path_to_cache_dir, exist_ok=True)
_, _, ap = voc_eval(detpath=os.path.join(path_to_results_dir, 'comp3_det_test_{:s}.txt'.format(category)),
annopath=os.path.join(path_to_annotations_dir, '{:s}.xml'),
imagesetfile=os.path.join(path_to_main_dir, 'test.txt'),
classname=category,
cachedir=path_to_cache_dir,
ovthresh=0.5,
use_07_metric=True)
except IndexError:
ap = 0
class_to_ap_dict[c] = ap
mean_ap = np.mean([v for k, v in class_to_ap_dict.items()]).item()
detail = ''
for c in range(1, VOC2007CatDog.num_classes()):
detail += '{:d}: {:s} AP = {:.4f}\n'.format(c, VOC2007CatDog.LABEL_TO_CATEGORY_DICT[c], class_to_ap_dict[c])
return mean_ap, detail
示例3: _do_matlab_eval
# 需要導入模塊: import voc_eval [as 別名]
# 或者: from voc_eval import voc_eval [as 別名]
def _do_matlab_eval(self, output_dir='output'):
print '-----------------------------------------------------'
print 'Computing results with the official MATLAB eval code.'
print '-----------------------------------------------------'
path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
'VOCdevkit-matlab-wrapper')
cmd = 'cd {} && '.format(path)
cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
cmd += '-r "dbstop if error; '
cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
.format(self._devkit_path, self._get_comp_id(),
self._image_set, output_dir)
print('Running:\n{}'.format(cmd))
status = subprocess.call(cmd, shell=True)
示例4: _do_matlab_eval
# 需要導入模塊: import voc_eval [as 別名]
# 或者: from voc_eval import voc_eval [as 別名]
def _do_matlab_eval(self, comp_id, output_dir='output'):
rm_results = self.config['cleanup']
path = os.path.join(os.path.dirname(__file__),
'VOCdevkit-matlab-wrapper')
cmd = 'cd {} && '.format(path)
cmd += '{:s} -nodisplay -nodesktop '.format(datasets.MATLAB)
cmd += '-r "dbstop if error; '
cmd += 'setenv(\'LC_ALL\',\'C\'); voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\',{:d}); quit;"' \
.format(self._devkit_path, comp_id,
self._image_set, output_dir, int(rm_results))
print('Running:\n{}'.format(cmd))
status = subprocess.call(cmd, shell=True)
示例5: _do_python_eval
# 需要導入模塊: import voc_eval [as 別名]
# 或者: from voc_eval import voc_eval [as 別名]
def _do_python_eval(self, output_dir='output'):
annopath = os.path.join(
self._devkit_path,
'RGZ' + self._year,
'Annotations',
'{:s}.xml')
imagesetfile = os.path.join(
self._devkit_path,
'RGZ' + self._year,
'ImageSets',
'Main',
self._image_set + '.txt')
cachedir = os.path.join(self._devkit_path, 'annotations_cache')
aps = []
# The PASCAL VOC metric changed in 2010
use_07_metric = True if int(self._year) < 2010 else False
print 'VOC07 metric? ' + ('Yes' if use_07_metric else 'No')
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
for i, cls in enumerate(self._classes):
if cls == '__background__':
continue
filename = self._get_voc_results_file_template().format(cls)
rec, prec, ap = voc_eval(
filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5,
use_07_metric=use_07_metric)
aps += [ap]
print('AP for {} = {:.4f}'.format(cls, ap))
with open(os.path.join(output_dir, cls + '_pr.pkl'), 'w') as f:
cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
print('Mean AP = {:.4f}'.format(np.mean(aps)))
print('~~~~~~~~')
print('Results:')
for ap in aps:
print('{:.3f}'.format(ap))
print('{:.3f}'.format(np.mean(aps)))
print('~~~~~~~~')
print('')
示例6: _do_matlab_eval
# 需要導入模塊: import voc_eval [as 別名]
# 或者: from voc_eval import voc_eval [as 別名]
def _do_matlab_eval(self, comp_id, output_dir='output'):
rm_results = self.config['cleanup']
path = os.path.join(os.path.dirname(__file__),
'VOCdevkit-matlab-wrapper')
cmd = 'cd {} && '.format(path)
cmd += '{:s} -nodisplay -nodesktop '.format(datasets.MATLAB)
cmd += '-r "dbstop if error; '
cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\',{:d}); quit;"' \
.format(self._devkit_path, comp_id,
self._image_set, output_dir, int(rm_results))
print('Running:\n{}'.format(cmd))
status = subprocess.call(cmd, shell=True)
示例7: _do_python_eval
# 需要導入模塊: import voc_eval [as 別名]
# 或者: from voc_eval import voc_eval [as 別名]
def _do_python_eval(self, output_dir = 'output'):
annopath = os.path.join(
self._devkit_path,
'VOC' + self._year,
'Annotations',
'{:s}.xml')
imagesetfile = os.path.join(
self._devkit_path,
'VOC' + self._year,
'ImageSets',
'Main',
self._image_set + '.txt')
cachedir = os.path.join(self._devkit_path, 'annotations_cache')
aps = []
# The PASCAL VOC metric changed in 2010
use_07_metric = True if int(self._year) < 2010 else False
print 'VOC07 metric? ' + ('Yes' if use_07_metric else 'No')
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
for i, cls in enumerate(self._classes):
if cls == '__background__':
continue
filename = self._get_voc_results_file_template().format(cls)
rec, prec, ap = voc_eval(
filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5,
use_07_metric=use_07_metric)
aps += [ap]
print('AP for {} = {:.4f}'.format(cls, ap))
with open(os.path.join(output_dir, cls + '_pr.pkl'), 'w') as f:
cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
print('Mean AP = {:.4f}'.format(np.mean(aps)))
print('~~~~~~~~')
print('Results:')
for ap in aps:
print('{:.3f}'.format(ap))
print('{:.3f}'.format(np.mean(aps)))
print('~~~~~~~~')
print('')
print('--------------------------------------------------------------')
print('Results computed with the **unofficial** Python eval code.')
print('Results should be very close to the official MATLAB eval code.')
print('Recompute with `./tools/reval.py --matlab ...` for your paper.')
print('-- Thanks, The Management')
print('--------------------------------------------------------------')
示例8: _do_python_eval
# 需要導入模塊: import voc_eval [as 別名]
# 或者: from voc_eval import voc_eval [as 別名]
def _do_python_eval(self, output_dir = 'output'):
annopath = os.path.join(
self._devkit_path,
'VOC' + self._year,
'Annotations',
'{:s}.xml')
imagesetfile = os.path.join(
self._devkit_path,
'VOC' + self._year,
'ImageSets',
'Main',
self._image_set + '.txt')
cachedir = os.path.join(self._devkit_path, 'annotations_cache_{}'.format(self._year))
aps = []
# The PASCAL VOC metric changed in 2010
use_07_metric = True if int(self._year) < 2010 else False
print 'VOC07 metric? ' + ('Yes' if use_07_metric else 'No')
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
for i, cls in enumerate(self._classes):
if cls == '__background__':
continue
filename = self._get_voc_results_file_template().format(cls)
rec, prec, ap = voc_eval(
filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5,
use_07_metric=use_07_metric)
aps += [ap]
print('AP for {} = {:.4f}'.format(cls, ap))
with open(os.path.join(output_dir, cls + '_pr.pkl'), 'w') as f:
cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
print('Mean AP = {:.4f}'.format(np.mean(aps)))
print('~~~~~~~~')
print('Results:')
for ap in aps:
print('{:.3f}'.format(ap))
print('{:.3f}'.format(np.mean(aps)))
print('~~~~~~~~')
print('')
print('--------------------------------------------------------------')
print('Results computed with the **unofficial** Python eval code.')
print('Results should be very close to the official MATLAB eval code.')
print('Recompute with `./tools/reval.py --matlab ...` for your paper.')
print('-- Thanks, The Management')
print('--------------------------------------------------------------')