當前位置: 首頁>>代碼示例>>Python>>正文


Python visualization_utils.visualize_boxes_and_labels_on_image_array方法代碼示例

本文整理匯總了Python中visualization_utils.visualize_boxes_and_labels_on_image_array方法的典型用法代碼示例。如果您正苦於以下問題:Python visualization_utils.visualize_boxes_and_labels_on_image_array方法的具體用法?Python visualization_utils.visualize_boxes_and_labels_on_image_array怎麽用?Python visualization_utils.visualize_boxes_and_labels_on_image_array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在visualization_utils的用法示例。


在下文中一共展示了visualization_utils.visualize_boxes_and_labels_on_image_array方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _draw_detections

# 需要導入模塊: import visualization_utils [as 別名]
# 或者: from visualization_utils import visualize_boxes_and_labels_on_image_array [as 別名]
def _draw_detections(image_np, detections, category_index):
  """Draws detections on to the image.

  Args:
    image_np: Image in the form of uint8 numpy array.
    detections: a dictionary that contains the detection outputs.
    category_index: contains the mapping between indexes and the category names.

  Returns:
    Does not return anything but draws the boxes on the
  """
  vis_util.visualize_boxes_and_labels_on_image_array(
      image_np,
      detections['detection_boxes'],
      detections['detection_classes'],
      detections['detection_scores'],
      category_index,
      use_normalized_coordinates=True,
      max_boxes_to_draw=1000,
      min_score_thresh=.0,
      agnostic_mode=False) 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:23,代碼來源:active_vision_dataset_env.py

示例2: camThread

# 需要導入模塊: import visualization_utils [as 別名]
# 或者: from visualization_utils import visualize_boxes_and_labels_on_image_array [as 別名]
def camThread():
    # Wait for a coherent pair of frames: depth and color
    frames = pipeline.wait_for_frames()
    depth_frame = frames.get_depth_frame()
    color_frame = frames.get_color_frame()
    if not depth_frame or not color_frame:
        return
    
    # Convert images to numpy arrays
    depth_image = np.asanyarray(depth_frame.get_data())
    color_image = np.asanyarray(color_frame.get_data())
    height = color_image.shape[0]
    width = color_image.shape[1]

    frame_expanded = np.expand_dims(color_image, axis=0)

    # Perform the actual detection by running the model with the image as input
    (boxes, scores, classes, num) = sess.run(
        [detection_boxes, detection_scores, detection_classes, num_detections],
        feed_dict={image_tensor: frame_expanded})

    # Draw the results of the detection (aka 'visulaize the results')
    img = vis_util.visualize_boxes_and_labels_on_image_array(
        color_image,
        np.squeeze(boxes),
        np.squeeze(classes).astype(np.int32),
        np.squeeze(scores),
        category_index,
        use_normalized_coordinates=True,
        line_thickness=2,
        min_score_thresh=0.55,
        depth_frame=depth_frame,
        height=height,
        width=width)

    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
    glColor3f(1.0, 1.0, 1.0)
    glEnable(GL_TEXTURE_2D)
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)
    glBegin(GL_QUADS) 
    glTexCoord2d(0.0, 1.0)
    glVertex3d(-1.0, -1.0,  0.0)
    glTexCoord2d(1.0, 1.0)
    glVertex3d( 1.0, -1.0,  0.0)
    glTexCoord2d(1.0, 0.0)
    glVertex3d( 1.0,  1.0,  0.0)
    glTexCoord2d(0.0, 0.0)
    glVertex3d(-1.0,  1.0,  0.0)
    glEnd()
    glFlush()
    glutSwapBuffers() 
開發者ID:PINTO0309,項目名稱:MobileNet-SSDLite-RealSense-TF,代碼行數:55,代碼來源:MobileNetSSDwithRealSenseTF.py


注:本文中的visualization_utils.visualize_boxes_and_labels_on_image_array方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。