當前位置: 首頁>>代碼示例>>Python>>正文


Python util.is_np_array方法代碼示例

本文整理匯總了Python中utils.util.is_np_array方法的典型用法代碼示例。如果您正苦於以下問題:Python util.is_np_array方法的具體用法?Python util.is_np_array怎麽用?Python util.is_np_array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils.util的用法示例。


在下文中一共展示了util.is_np_array方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: inference

# 需要導入模塊: from utils import util [as 別名]
# 或者: from utils.util import is_np_array [as 別名]
def inference(
      self, inference_input, checkpoint_path, batch_size=None, **kwargs):
    """Defines 3 of modes of inference.

    Inputs:
    * Mode 1: Input is an input_fn.
    * Mode 2: Input is a TFRecord (or list of TFRecords).
    * Mode 3: Input is a numpy array holding an image (or array of images).

    Outputs:
    * Mode 1: this returns an iterator over embeddings and additional
      metadata. See
      https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator#predict
      for details.
    * Mode 2: Returns an iterator over tuples of
      (embeddings, raw_image_strings, sequence_name), where embeddings is a
      2-D float32 numpy array holding [sequence_size, embedding_size] image
      embeddings, raw_image_strings is a 1-D string numpy array holding
      [sequence_size] jpeg-encoded image strings, and sequence_name is a
      string holding the name of the embedded sequence.
    * Mode 3: Returns a tuple of (embeddings, raw_image_strings), where
      embeddings is a 2-D float32 numpy array holding
      [batch_size, embedding_size] image embeddings, raw_image_strings is a
      1-D string numpy array holding [batch_size] jpeg-encoded image strings.

    Args:
      inference_input: This can be a tf.Estimator input_fn, a TFRecord path,
        a list of TFRecord paths, a numpy image, or an array of numpy images.
      checkpoint_path: String, path to the checkpoint to restore for inference.
      batch_size: Int, the size of the batch to use for inference.
      **kwargs: Additional keyword arguments, depending on the mode.
        See _input_fn_inference, _tfrecord_inference, and _np_inference.
    Returns:
      inference_output: Inference output depending on mode, see above for
        details.
    Raises:
      ValueError: If inference_input isn't a tf.Estimator input_fn,
        a TFRecord path, a list of TFRecord paths, or a numpy array,
    """
    # Mode 1: input is a callable tf.Estimator input_fn.
    if callable(inference_input):
      return self._input_fn_inference(
          input_fn=inference_input, checkpoint_path=checkpoint_path, **kwargs)
    # Mode 2: Input is a TFRecord path (or list of TFRecord paths).
    elif util.is_tfrecord_input(inference_input):
      return self._tfrecord_inference(
          records=inference_input, checkpoint_path=checkpoint_path,
          batch_size=batch_size, **kwargs)
    # Mode 3: Input is a numpy array of raw images.
    elif util.is_np_array(inference_input):
      return self._np_inference(
          np_images=inference_input, checkpoint_path=checkpoint_path, **kwargs)
    else:
      raise ValueError(
          'inference input must be a tf.Estimator input_fn, a TFRecord path,'
          'a list of TFRecord paths, or a numpy array. Got: %s' % str(type(
              inference_input))) 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:59,代碼來源:base_estimator.py


注:本文中的utils.util.is_np_array方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。