當前位置: 首頁>>代碼示例>>Python>>正文


Python util.KNNIdsWithDistances方法代碼示例

本文整理匯總了Python中utils.util.KNNIdsWithDistances方法的典型用法代碼示例。如果您正苦於以下問題:Python util.KNNIdsWithDistances方法的具體用法?Python util.KNNIdsWithDistances怎麽用?Python util.KNNIdsWithDistances使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils.util的用法示例。


在下文中一共展示了util.KNNIdsWithDistances方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compute_average_alignment

# 需要導入模塊: from utils import util [as 別名]
# 或者: from utils.util import KNNIdsWithDistances [as 別名]
def compute_average_alignment(
    seqname_to_embeddings, num_views, summary_writer, training_step):
  """Computes the average cross-view alignment for all sequence view pairs.

  Args:
    seqname_to_embeddings: Dict, mapping sequence name to a
      [num_views, embedding size] numpy matrix holding all embedded views.
    num_views: Int, number of simultaneous views in the dataset.
    summary_writer: A `SummaryWriter` object.
    training_step: Int, the training step of the model used to embed images.

  Alignment is the scaled absolute difference between the ground truth time
  and the knn aligned time.
  abs(|time_i - knn_time|) / sequence_length
  """
  all_alignments = []
  for _, view_embeddings in seqname_to_embeddings.iteritems():
    for idx_i in range(num_views):
      for idx_j in range(idx_i+1, num_views):
        embeddings_view_i = view_embeddings[idx_i]
        embeddings_view_j = view_embeddings[idx_j]

        seq_len = len(embeddings_view_i)

        times_i = np.array(range(seq_len))
        # Get the nearest time_index for each embedding in view_i.
        times_j = np.array([util.KNNIdsWithDistances(
            q, embeddings_view_j, k=1)[0][0] for q in embeddings_view_i])

        # Compute sequence view pair alignment.
        alignment = np.mean(
            np.abs(np.array(times_i)-np.array(times_j))/float(seq_len))
        all_alignments.append(alignment)
        print 'alignment so far %f' % alignment
  average_alignment = np.mean(all_alignments)
  print 'Average alignment %f' % average_alignment
  summ = tf.Summary(value=[tf.Summary.Value(
      tag='validation/alignment', simple_value=average_alignment)])
  summary_writer.add_summary(summ, int(training_step)) 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:41,代碼來源:alignment.py

示例2: compute_average_alignment

# 需要導入模塊: from utils import util [as 別名]
# 或者: from utils.util import KNNIdsWithDistances [as 別名]
def compute_average_alignment(
    seqname_to_embeddings, num_views, summary_writer, training_step):
  """Computes the average cross-view alignment for all sequence view pairs.

  Args:
    seqname_to_embeddings: Dict, mapping sequence name to a
      [num_views, embedding size] numpy matrix holding all embedded views.
    num_views: Int, number of simultaneous views in the dataset.
    summary_writer: A `SummaryWriter` object.
    training_step: Int, the training step of the model used to embed images.

  Alignment is the scaled absolute difference between the ground truth time
  and the knn aligned time.
  abs(|time_i - knn_time|) / sequence_length
  """
  all_alignments = []
  for _, view_embeddings in seqname_to_embeddings.iteritems():
    for idx_i in range(num_views):
      for idx_j in range(idx_i+1, num_views):
        embeddings_view_i = view_embeddings[idx_i]
        embeddings_view_j = view_embeddings[idx_j]

        seq_len = len(embeddings_view_i)

        times_i = np.array(range(seq_len))
        # Get the nearest time_index for each embedding in view_i.
        times_j = np.array([util.KNNIdsWithDistances(
            q, embeddings_view_j, k=1)[0][0] for q in embeddings_view_i])

        # Compute sequence view pair alignment.
        alignment = np.mean(
            np.abs(np.array(times_i)-np.array(times_j))/float(seq_len))
        all_alignments.append(alignment)
        print('alignment so far %f' % alignment)
  average_alignment = np.mean(all_alignments)
  print('Average alignment %f' % average_alignment)
  summ = tf.Summary(value=[tf.Summary.Value(
      tag='validation/alignment', simple_value=average_alignment)])
  summary_writer.add_summary(summ, int(training_step)) 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:41,代碼來源:alignment.py


注:本文中的utils.util.KNNIdsWithDistances方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。