當前位置: 首頁>>代碼示例>>Python>>正文


Python util.GetFilesRecursively方法代碼示例

本文整理匯總了Python中utils.util.GetFilesRecursively方法的典型用法代碼示例。如果您正苦於以下問題:Python util.GetFilesRecursively方法的具體用法?Python util.GetFilesRecursively怎麽用?Python util.GetFilesRecursively使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils.util的用法示例。


在下文中一共展示了util.GetFilesRecursively方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from utils import util [as 別名]
# 或者: from utils.util import GetFilesRecursively [as 別名]
def main(_):
  # Parse config dict from yaml config files / command line flags.
  config = util.ParseConfigsToLuaTable(FLAGS.config_paths, FLAGS.model_params)
  num_views = config.data.num_views

  validation_records = util.GetFilesRecursively(config.data.validation)
  batch_size = config.data.batch_size

  checkpointdir = FLAGS.checkpointdir

  # If evaluating a specific checkpoint, do that.
  if FLAGS.checkpoint_iter:
    checkpoint_path = os.path.join(
        '%s/model.ckpt-%s' % (checkpointdir, FLAGS.checkpoint_iter))
    evaluate_once(
        config, checkpointdir, validation_records, checkpoint_path, batch_size,
        num_views)
  else:
    for checkpoint_path in tf.contrib.training.checkpoints_iterator(
        checkpointdir):
      evaluate_once(
          config, checkpointdir, validation_records, checkpoint_path,
          batch_size, num_views) 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:25,代碼來源:alignment.py

示例2: evaluate

# 需要導入模塊: from utils import util [as 別名]
# 或者: from utils.util import GetFilesRecursively [as 別名]
def evaluate(self):
    """Runs `Estimator` validation.
    """
    config = self._config

    # Get a list of validation tfrecords.
    validation_dir = config.data.validation
    validation_records = util.GetFilesRecursively(validation_dir)

    # Define batch size.
    self._batch_size = config.data.batch_size

    # Create a subclass-defined training input function.
    validation_input_fn = self.construct_input_fn(
        validation_records, False)

    # Create the estimator.
    estimator = self._build_estimator(is_training=False)

    # Run validation.
    eval_batch_size = config.data.batch_size
    num_eval_samples = config.val.num_eval_samples
    num_eval_batches = int(num_eval_samples / eval_batch_size)
    estimator.evaluate(input_fn=validation_input_fn, steps=num_eval_batches) 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:26,代碼來源:base_estimator.py

示例3: get_labeled_tables

# 需要導入模塊: from utils import util [as 別名]
# 或者: from utils.util import GetFilesRecursively [as 別名]
def get_labeled_tables(config):
  """Gets either labeled test or validation tables, based on flags."""
  # Get a list of filenames corresponding to labeled data.
  mode = FLAGS.mode
  if mode == 'validation':
    labeled_tables = util.GetFilesRecursively(config.data.labeled.validation)
  elif mode == 'test':
    labeled_tables = util.GetFilesRecursively(config.data.labeled.test)
  else:
    raise ValueError('Unknown dataset: %s' % mode)
  return labeled_tables 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:13,代碼來源:labeled_eval.py

示例4: main

# 需要導入模塊: from utils import util [as 別名]
# 或者: from utils.util import GetFilesRecursively [as 別名]
def main(_):
  # Parse config dict from yaml config files / command line flags.
  config = util.ParseConfigsToLuaTable(FLAGS.config_paths, FLAGS.model_params)

  # Get tables to embed.
  query_records_dir = FLAGS.query_records_dir
  query_records = util.GetFilesRecursively(query_records_dir)

  target_records_dir = FLAGS.target_records_dir
  target_records = util.GetFilesRecursively(target_records_dir)

  height = config.data.raw_height
  width = config.data.raw_width
  mode = FLAGS.mode
  if mode == 'multi':
    # Generate videos where target set is composed of multiple videos.
    MultiImitationVideos(query_records, target_records, config,
                         height, width)
  elif mode == 'single':
    # Generate videos where target set is a single video.
    SingleImitationVideos(query_records, target_records, config,
                          height, width)
  elif mode == 'same':
    # Generate videos where target set is the same as query, but diff view.
    SameSequenceVideos(query_records, config, height, width)
  else:
    raise ValueError('Unknown mode %s' % mode) 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:29,代碼來源:generate_videos.py

示例5: train

# 需要導入模塊: from utils import util [as 別名]
# 或者: from utils.util import GetFilesRecursively [as 別名]
def train(self):
    """Runs training."""
    # Get a list of training tfrecords.
    config = self._config
    training_dir = config.data.training
    training_records = util.GetFilesRecursively(training_dir)

    # Define batch size.
    self._batch_size = config.data.batch_size

    # Create a subclass-defined training input function.
    train_input_fn = self.construct_input_fn(
        training_records, is_training=True)

    # Create the estimator.
    estimator = self._build_estimator(is_training=True)

    train_hooks = None
    if config.use_tpu:
      # TPU training initializes pretrained weights using a custom train hook.
      train_hooks = []
      if tf.train.latest_checkpoint(self._logdir) is None:
        train_hooks.append(
            InitFromPretrainedCheckpointHook(
                config[config.embedder_strategy].pretrained_checkpoint))

    # Run training.
    estimator.train(input_fn=train_input_fn, hooks=train_hooks,
                    steps=config.learning.max_step) 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:31,代碼來源:base_estimator.py


注:本文中的utils.util.GetFilesRecursively方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。