本文整理匯總了Python中utils.tex_escape方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.tex_escape方法的具體用法?Python utils.tex_escape怎麽用?Python utils.tex_escape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類utils
的用法示例。
在下文中一共展示了utils.tex_escape方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: make_domain_table
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import tex_escape [as 別名]
def make_domain_table(df, save_cfg=cfg.saving_config):
"""Make domain table that contains every reference.
"""
# Replace NaNs by ' ' in 'Domain 3' and 'Domain 4' columns
df = ut.replace_nans_in_column(df, 'Domain 3', replace_by=' ')
df = ut.replace_nans_in_column(df, 'Domain 4', replace_by=' ')
cols = ['Domain 1', 'Domain 2', 'Domain 3', 'Domain 4', 'Architecture (clean)']
df[cols] = df[cols].applymap(ut.tex_escape)
# Make tuple of first 2 domain levels
domains_df = df.groupby(cols)['Citation'].apply(list).apply(
lambda x: '\cite{' + ', '.join(x) + '}').unstack()
domains_df = domains_df.applymap(
lambda x: ' ' if isinstance(x, float) and np.isnan(x) else x)
fname = os.path.join(save_cfg['table_savepath'], 'domains_architecture_table.tex')
with open(fname, 'w') as f:
with pd.option_context("max_colwidth", 1000):
f.write(domains_df.to_latex(
escape=False,
column_format='p{1.5cm}' * 4 + 'p{0.6cm}' * domains_df.shape[1]))
示例2: autorun_get_latex_interactive_session
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import tex_escape [as 別名]
def autorun_get_latex_interactive_session(cmds, **kargs):
ct = conf.color_theme
to_latex = lambda s: tex_escape(s).replace("@[@","{").replace("@]@","}").replace("@`@","\\")
try:
try:
conf.color_theme = LatexTheme2()
s,res = autorun_get_interactive_session(cmds, **kargs)
except StopAutorun,e:
e.code_run = to_latex(e.code_run)
raise
finally:
conf.color_theme = ct
return to_latex(s),res
示例3: make_dataset_table
# 需要導入模塊: import utils [as 別名]
# 或者: from utils import tex_escape [as 別名]
def make_dataset_table(df, min_n_articles=2, save_cfg=cfg.saving_config):
"""Make table that reports most used datasets.
Args:
df
Keyword Args:
min_n_articles (int): minimum number of times a dataset must have been
used to be listed in the table. If under that number, will appear as
'Other' in the table.
save_cfg (dict)
"""
def merge_dataset_names(s):
if 'bci comp' in s.lower():
s = 'BCI Competition'
elif 'tuh' in s.lower():
s = 'TUH'
elif 'mahnob' in s.lower():
s = 'MAHNOB'
return s
col = 'Dataset name'
datasets_df = ut.split_column_with_multiple_entries(
df, col, ref_col=['Main domain', 'Citation'], sep=';\n', lower=False)
# Remove not mentioned and internal recordings, as readers won't be able to
# use these datasets anyway
datasets_df = datasets_df.loc[~datasets_df[col].isin(
['N/M', 'Internal Recordings', 'TBD'])]
datasets_df['Dataset'] = datasets_df[col].apply(merge_dataset_names).apply(
ut.tex_escape)
# Replace datasets that were used rarely by 'Other'
counts = datasets_df['Dataset'].value_counts()
datasets_df.loc[datasets_df['Dataset'].isin(
counts[counts < min_n_articles].index), 'Dataset'] = 'Other'
# Remove duplicates (due to grouping of Others and BCI Comp)
datasets_df = datasets_df.drop(labels=col, axis=1)
datasets_df = datasets_df.drop_duplicates()
# Group by dataset and order by number of articles
dataset_table = datasets_df.groupby(
['Main domain', 'Dataset'], as_index=True)['Citation'].apply(list)
dataset_table = pd.concat([dataset_table.apply(len), dataset_table], axis=1)
dataset_table.columns = [r'\# articles', 'References']
dataset_table = dataset_table.sort_values(
by=['Main domain', r'\# articles'], ascending=[True, False])
dataset_table['References'] = dataset_table['References'].apply(
lambda x: r'\cite{' + ', '.join(x) + '}')
with open(os.path.join(save_cfg['table_savepath'], 'dataset_table.tex'), 'w') as f:
with pd.option_context("max_colwidth", 1000):
f.write(dataset_table.to_latex(escape=False, multicolumn=False))